

Cognitive Technologies

Managing Editors: D.M. Gabbay J. Siekmann

Editorial Board: A. Bundy J. G. Carbonell
M. Pinkal H. Uszkoreit M. Veloso W. Wahlster
M. J. Wooldridge

Advisory Board:
Luigia Carlucci Aiello
Franz Baader
Wolfgang Bibel
Leonard Bolc
Craig Boutilier
Ron Brachman
Bruce G. Buchanan
Anthony Cohn
Artur d’Avila Garcez
Luis Fariñas del Cerro
Koichi Furukawa
Georg Gottlob
Patrick J. Hayes
James A. Hendler
Anthony Jameson
Nick Jennings
Aravind K. Joshi
Hans Kamp
Martin Kay
Hiroaki Kitano
Robert Kowalski
Sarit Kraus
Maurizio Lenzerini
Hector Levesque
John Lloyd

Alan Mackworth
Mark Maybury
Tom Mitchell
Johanna D. Moore
Stephen H. Muggleton
Bernhard Nebel
Sharon Oviatt
Luis Pereira
Lu Ruqian
Stuart Russell
Erik Sandewall
Luc Steels
Oliviero Stock
Peter Stone
Gerhard Strube
Katia Sycara
Milind Tambe
Hidehiko Tanaka
Sebastian Thrun
Junichi Tsujii
Kurt VanLehn
Andrei Voronkov
Toby Walsh
Bonnie Webber

With Figures, and 7 Tables

Srikanta Patnaik

Robot Cognition
and Navigation
An Experiment with Mobile Robots

95

Library of Congress Control Number: 2007928310

ACM Computing Classification: 1.2, 1.4, 1.5

ISSN 1611-2482
ISBN 978-3-540-23446-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

c© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Printed on acid-free paper 45/3180/Integra 5 4 3 2 1 0

India

Managing Editors:

Prof. Dov M. Gabbay
Augustus De Morgan Professor of Logic
Department of Computer Science, King’s College London
Strand, London WC2R 2LS, UK

Prof. Dr. Jörg Siekmann
Forschungsbereich Deduktions- und Multiagentensysteme, DFKI
Stuhlsatzenweg 3, Geb. 43, 66123 Saarbr cken, Germany

Typesettin
Production: Integra Software Services Pvt. Ltd., Puducherry, India
Cover Design: KünkelLopka, Heidelberg

ü

g: by the author

Author:

Srikanta Patnaik
Interscience Institute of Management Technology
Baranga- Khurda Road
P.O. Kantabada
Bhubaneswar 752 054

srikantapatnaik@interscience.in

&

–

To my wife

Priti

and my sons

Sritam and Priyam

Preface

This book is meant for graduate and undergraduate students. It contains
eighteen chapters, covering robot simulation, experiments and modelling
of mobile robots. It starts with the cybernetic view of robot cognition and
perception. Chapter 2 discusses map building, which is necessary for the
robot to sense and represent its surrounding. Chapter 3 describes path
planning in a static environment and a path planning technique using quad-
trees. Chapter 4 discusses robot navigation using genetic algorithm tech-
niques.

Chapter 5 briefly covers the robot programming package along with
hardware details for the robot experiments. Socket programming and the
multithreading concept are also briefly explained for robot programming.
Chapter 6 covers a client–server program for robot parameter display.
Chapter 7 covers the BotSpeak program and Chap. 8 covers gripper pro-
grams. Chapter 9 covers the program for Sonar reading display. Chapter 10
covers the robot program for wandering within the environment and Chap.
11 describes the program for tele-operation. A complete navigation pro-
gram has been explained in Chap. 12 utilizing all the functions of the ear-
lier chapters.

Chapter 13 describes the techniques for imaging geometry. Image for-
mation and the camera perspective matrix in 3D is covered in the chapter.
Chapter 14 describes the program for image capture through the robot’s
stereo camera. Chapter 15 describes the minimal representation of a 2D
line, a 3D line and a 3D plane. The chapter also describes the techniques
for reconstruction of 3D points, 3D lines and 3D planes using the Kalman
filter. A correspondence problem has also been highlighted in the chapter.
The program for 3D perception using the Kalman filter is given in Chap.
16. Chapter 17 describes robot perception for non-planar surfaces. In
Chap. 18, a real-time application of the mobile robot is given.

The detailed source codes of various programs mentioned in the book
are available in the website (http://www.springer.com/3-540-23446-2).

Acknowledgements

The author gratefully acknowledges the contribution of many people,
without whom this publication might not have been possible. First of all,
he wishes to thank his undergraduate students doing their final semester
project under his guidance in the Electronics and Telecommunication En-
gineering Department of U.C.E., Burla during the periods 2001–2002,
2002–2003 and 2003–2004. The author would like to convey special
thanks to his students Deb Prakash, Priyanka, Sarada Prasanna, Vidyasa-
gar, Amaresh and Bismaya.

The author would like to thank his teacher, Prof. K. C. Mohapatra, who
inspired his writing skill, which later enabled him to write this book. He
remembers his onetime project supervisor Dr. Rutuparna Panda of the
Electronics and Telecommunication Engineering Department of U.C.E.,
Burla, for his constructive criticism, which helped him develop the habit of
checking a thought twice before planning. The author is greatly indebted to
his PhD guide, Dr. Amit Konar, and Prof. A. K. Mandal of Jadavpur Uni-
versity, due to whom he conceived the idea of writing a book in this area.
The author wants to convey special thanks to his colleagues Dr. Brajamo-
han Otta and Mr. Rabinarayan Rath, for their personal support and help.

The author is indebted to Prof. Ratikanta Mishra, Vice-Chancellor of
Biju Patnaik University of Technology, Rourkela, for his constant help,
support and encouragement during the compilation of the book. The author
owes deep gratitude to Prof. Sukadev Nanda, Vice-Chancellor of F. M.
University, Balasore, for his help and administrative support for the writ-
ing and completion of this project.

The author sincerely thanks the All India Council for Technical Educa-
tion, New Delhi, for the project grant towards the TAPTEC project entitled
Building Cognition for Mobile Robots for procuring the mobile robot Pio-
neer DX-2, from ActivMedia Robotics LLC, USA. The author also ac-
knowledges the support of the University Grant Commission’s major re-
search project entitled Machine Learning and Perception Using Cognitive
Methods through which many experiments could be conducted.

stood by him throughout his life. Last but not least, the author wishes to
thank his wife Priti for her tolerance and forbearance of his indifference to
family life and her assistance in many ways for the successful completion
of the book. He also conveys special thanks to his sons Sritam and Priyam
for their sacrifice and tolerance during the writing of the book.

The author would like to thank Ingeborg Mayer and Ronan Nugent of
Springer for their kind cooperation in connection with writing this book.
The author wishes to express his deep gratitude to his parents, who always

X Acknowledgements

India, Februay 2007 Srikanta Patnaik

Contents

1 Cybernetic View of Robot Cognition and Perception1
 1.1 Introduction to the Model of Cognition....................................1
 1.1.1 Various States of Cognition ..3
 1.1.2 Cycles of Cognition...5
 1.2 Visual Perception..7
 1.2.1 Human Visual System...7
 1.2.2 Vision for Mobile Robots..8
 1.3 Visual Recognition...10
 1.3.1 Template Matching ...11
 1.3.2 Feature-Based Model ..11
 1.3.3 Fourier Model..12
 1.3.4 Structural Model..12
 1.3.5 The Computational Theory of Marr13
 1.4 Machine Learning...13
 1.4.1 Properties and Issues in Machine Learning...................13
 1.4.2 Classification of Machine Learning15
 1.5 Soft Computing Tools and Robot Cognition17
 1.5.1 Modeling Cognition Using ANN17
 1.5.2 Fuzzy Logic in Robot Cognition19
 1.5.3 Genetic Algorithms in Robot Cognition19
 1.6 Summary...20

2 Map Building…………………………………………………... 21
 2.1 Introduction...21
 2.2 Constructing a 2D World Map..22
 2.2.1 Data Structure for Map Building...................................22
 2.2.2 Explanation of the Algorithm..26
 2.2.3 An Illustration of Procedure Traverse Boundary 27
 2.2.4 An Illustration of Procedure Map Building29
 2.2.5 Robot Simulation...31
 2.3 Execution of the Map Building Program................................33
 2.4 Summary...38

..

XII Contents

3. Path Planning.. 39
 3.1 Introduction... 39
 3.2 Representation of the Robot’s Environment........................... 39
 3.2.1 GVD Using Cellular Automata 40
 3.3 Path Optimization by the Quadtree Approach 41
 3.3.1 Introduction to the Quadtree ... 41
 3.3.2 Definition .. 42
 3.3.3 Generation of the Quadtree ... 42
 3.4 Neighbor-Finding Algorithms for the Quadtree 47
 3.5 The A* Algorithm for Selecting the Best Neighbor 52
 3.6 Execution of the Quadtree-Based Path Planner Program 54
 3.7 Summary .. 58

4 Navigation Using a Genetic Algorithm 59
 4.1 Introduction... 59
 4.2 Genetic Algorithms... 60
 4.2.1 Encoding of a Chromosome.. 61
 4.2.2 Crossover... 62
 4.2.3 Mutation .. 62
 4.2.4 Parameters of a GA ... 63
 4.2.5 Selection.. 63
 4.3 Navigation by a Genetic Algorithm.. 64
 4.3.1 Formulation of Navigation .. 64
 4.4 Execution of the GA-Based Navigation Program................... 67
 4.5 Replanning by Temporal Associative Memory 68
 4.5.1 Introduction to TAM ... 68
 4.5.2 Encoding and Decoding Process

in a Temporal Memory... 70
 4.5.3 An Example in a Semi-dynamic Environment.............. 71
 4.5.4 Implications of Results.. 74
 4.6 Summary... 75

5 Robot Programming Packages .. 77
 5.1 Introduction... 77
 5.2 Robot Hardware and Software Resources 78
 5.2.1 Components... 79
 5.3 ARIA .. 79
 5.3.1 ARIA Client–Server.. 80
 5.3.2 Robot Communication .. 84
 5.3.3 Opening the Connection.. 84
 5.3.4 ArRobot... 85
 5.3.5 Range Devices... 87

.
.

.

.
.

 5.3.6 Commands and Actions ..88

Contents XIII

 5.4 Socket Programming ..95
 5.4.1 Socket Programming in ARIA96
 5.5 BotSpeak Speech System..98
 5.5.1 Functions ...98
 5.6 Small Vision System (SVS)..100
 5.6.1 SVS C++ Classes ..101
 5.6.2 Parameter Classes..102
 5.6.3 Stereo Image Class ..102
 5.6.4 Acquisition Classes ...106
 5.7 Multithreading ..112
 5.8 Client Front-End Design Using Java113
 5.9 Summary...113

6 Robot Parameter Display...115
 6.1 Introduction...115

 6.3 Summary...125

7 Program for BotSpeak ...127
 7.1 Introduction...127
 7.2 Flow Chart and Source Code for BotSpeak Program127
 7.3 Summary...136

8 Gripper Control Program..137
 8.1 Introduction...137

 8.3 Summary...150

9 Program for Sonar Reading Display.......................................151
 9.1 Introduction...151
 9.2 Flow Chart and Source Code for Sonar Reading Display

on Client ...151
 9.3 Summary...161

10 Program for Wandering Within the Workspace163
 10.1 Introduction...163
 10.2 Algorithm and Source Code for Wandering Within

the Workspace ..163
 10.3 Summary...173

 8.2 Flow Chart and Source Code for Gripper Control
Program..137

 6.2 Flow Chart and Source Code for Robot Parameter
Display ...115

XIV Contents

11 Program for Tele-operation... 175
 11.1 Introduction... 175
 11.2 Algorithm and Source Code for Tele-operation 175
 11.3 Summary... 188

12 A Complete Program for Autonomous Navigation 189
 12.1 Introduction... 189
 12.2 The ImageServer Program. .. 190
 12.3 The MotionServer Program ... 192
 12.4 The Navigator Client Program.. 195

13 Imaging Geometry .. 201
 13.1 Introduction... 201
 13.2 Necessity for 3D Reconstruction .. 201
 13.3 Building Perception .. 202
 13.3.1 Problems of Understanding 3D Objects from 2D

Imagery .. 203
 13.3.2 Process of 3D Reconstruction 203
 13.4 Imaging Geometry .. 205
 13.4.1 Image Formation .. 205
 13.4.2 Perspective Projection in One Dimension................ 206
 13.4.3 Perspective Projection in 3D 207
 13.5 Global Representation .. 211
 13.6 Transformation to Global Coordinate System 217
 13.7 Summary... 220

14 Image Capture Program .. 221
 14.1 Introduction... 221
 14.2 Algorithm for Image Capture ... 221
 14.3 Summary... 225

15 Building 3D Perception Using a Kalman Filter 227
 15.1 Introduction... 227
 15.2 Minimal Representation.. 227
 15.3 Recursive Kalman Filter ... 229
 15.4 Experiments and Estimation ... 231
 15.4.1 Reconstruction of 3D Points 237
 15.4.2 Reconstruction of a 3D Line 242
 15.4.3 Reconstruction of a 3D Plane................................... 246
 15.5 Correspondence Problem in 3D Recovery.......................... 249
 15.6 Summary... 250

12.5 Summary... 199

.

Contents XV

16 Program for 3D Perception..251
 16.1 Introduction...251
 16.2 Flow Chart and Source Code for 3D Perception251
 16.3 Summary...262

17 Perceptions of Non-planar Surfaces..263
 17.1 Introduction...263
 17.2 Methods of Edge Detection ..263
 17.3 Curve Tracking and Curve Fitting266
 17.4 Program for Curve Detector ...270
 17.5 Summary...275

18 Intelligent Garbage Collection...277
 18.1 Introduction...277
 18.2 Algorithms and Source Code for Garbage Collection277
 18.3 Summary...281

References...283

Index..289

1 Cybernetic View of Robot Cognition

1.1 Introduction to the Model of Cognition

The word ‘cognition’ generally refers to the faculty of mental activities of
human beings dealing with abstraction of information from the real world,
their representation and storage in memory, as well as automatic recall
[Patnaik et al., 2003a]. It includes construction of higher level percepts
from low level information or knowledge, which is referred to as percep-
tion. It also does the construction of mental imagery from real instances for
subsequent usage in recognizing patterns or understanding complex
scenes. It includes various behaviors like sensing, reasoning, attention,
recognition, learning, planning and task coordination, as well as the control
of activities of human beings. Cognitive science is a contemporary field of
study that tries to answer questions about the nature of knowledge, its
components, development and uses [Matlin, 1984]. Cognitive scientists
have the opinion that human thinking involves the manipulation of internal
representation of the external world known as the cognitive model. Differ-
ent researchers have investigated various models of human cognition dur-
ing the last thirty years. Those were basically analytical and experimental
psychology, and gradually scientists have tried to implement this knowl-
edge in developing intelligent robots.

A very first model of a robot was developed by dividing the entire task
into a few subtasks, namely sensing, planning, task coordination and ac-
tion, which was popularly known as the principle of functional decomposi-
tion. These subtasks were realized on separate modules that together form
a chain of information flow from the environment to the actuators, through
sensing, planning and task coordination. The primitive model is poor at
accommodating major components like perception, map building and
world modeling. Subsequently, these functional modules were included in
the robot model, by various researchers.

and Perception

2 1 Cybernetic View of Robot Cognition and Perception

In 1986, Rodney A. Brooks was the first man to use the findings of
ethological research, and to design a mobile robot. He published a seminal
paper on the subsumption architecture, which was fundamentally a differ-
ent approach in the development of mobile robots [Arbib, 1981]. He de-
veloped the subsumption language that would allow him to model some-
thing analogous to animal behaviors in tight sense-act loops using
asynchronous finite-state machines. The first type of behavior for a robot
was used to avoid obstacles that are too close and moving a little away or
else standing still. Secondly, higher level behavior might be to move the
robot in a given direction. This behavior would dominate the obstacle-
avoidance behavior by suppressing its output to the actuators unless an ob-
ject comes too close. The higher levels subsumed the lower levels, and
therefore the name of the architecture was subsumption architecture. They
were able to develop a robot, using simple sonar or infrared sensors that
could wander around a laboratory for hours without colliding into objects
or moving people. After this development, Brooks and his colleagues de-
veloped highly mobile robots, i.e. mobots, both wheeled and legged, which
could chase moving objects or people and run or hide from light. Further,
they can negotiate a cluttered landscape which might be found in a rugged
outdoor environment.

During the 1990s, there were many developments such as HERBERT: a
soda-can-collecting robot [Connell, 1990]; GENGHIS: a robot that learned
to walk [Maes & Brooks, 1990; Brooks, 1989]; TOTO: a hallway-
navigating robot [Matric, 1992]; and POLLY: a tour-guide robot

ving possible alternative goals. The be-
havior in these robots was able to execute various actions on a priority
basis or to achieve various goals within the cycle time. After this develop-
ment, the world model was distributed among the types of behaviors with
only relevant parts of the model being processed for each behavior. The
generation of simple plans for path planning and the compilation of the

run time by using these types of

Today, researchers are trying to develop intelligent machines after a
careful and meticulous review of human cognition, soft computing tools
and techniques. But there are still open problems in these areas of machine
learning and perception, which are being investigated using many alterna-
tive approaches. This research work mainly aims at studying various tech-
niques of perception and learning, using the cognitive model, and their ap-
plications in mobile robots. Detailed programs have been provided in the
respective chapters.

[Horswill, 1993]. The idea was to build up capability in the robot through
behaviors that run in parallel to achie

result of actions could be done before
behaviors.

1.1 Introduction to the Model of Cognition 3

1.1.1 Various States of Cognition

Let us introduce a model of cognition that includes seven mental states,
namely sensing and acquisition, reasoning, attention, recognition, learn-
ing, planning, action and coordination and their transitions along with
cognitive memory, i.e. LTM and STM, as shown in Fig. 1.1. There are three
cycles embedded in the model, namely the acquisition cycle, the percep-
tion cycle and the learning and coordination cycle, which describe the
concurrent transition of various states.

The acquisition cycle consists of two states namely sensing and atten-
tion along with short term memory (STM) and long term memory (LTM),
whereas the perception cycle consists of three states namely reasoning, at-
tention and recognition along with LTM. The learning and coordination
cycle consists of LTM along with three states namely, learning, planning
and action. The various states are explained as follows.

Sensing and acquisition: Sensing in engineering science refers to recep-
tion and transformation of signals into a measurable form, which has a
wider perspective in cognitive science. It includes preprocessing and

Fig. 1.1. Three cycles namely acquisition, perception and learning and coordina-
tion, with their states in the model of cognition. LTM = Long Term Memory;
STM = Short Term Memory

4 1 Cybernetic View of Robot Cognition and Perception

extraction of features from the sensed data, along with stored knowledge in
LTM. For example, visual information on reception is filtered from unde-
sirable noise, and the elementary features like size, shape, color are ex-
tracted and stored in STM [Borenstain, 1996].

Reasoning: Generally this state constructs high level knowledge from ac-
quired information of relatively lower level and organizes it in structural
form for efficient access [Bharick, 1984]. The process of reasoning analy-
ses the semantic or meaningful behavior of the low level knowledge and
their association [Chang, 1986]. It can be modeled by a number of tech-
niques such as commonsense reasoning, causal reasoning, non-monotonic
reasoning, default reasoning, fuzzy reasoning, spatial and temporal reason-
ing, and meta-level reasoning [Popovic et al., 1994].

Attention: This is responsible for the processing of a certain part of the in-
formation more extensively, while the remaining part is neglected or sup-
pressed. Generally, it is task-specific visual processing which is adopted
by animal visual systems [Matlin, 1984]. For instance, finding out the area
of interest in a scene autonomously is an act of attention.

Recognition: This involves identifying a complex arrangement of sensory
stimuli such as a letter of the alphabet or a human face from a complex
scene [Murphy et al., 1998]. For example, when a person recognizes a
pattern or an object from a large scene, his sensory-organs process, trans-
form and organize the raw data received by the sensory receptors. Then
the process compares the acquired data from STM with the information
stored earlier in LTM through appropriate reasoning for recognition of the
sensed pattern.

Learning: Generally speaking, learning is a process that takes the sensory
stimuli from the outside world in the form of examples and classifies these
things without providing any explicit rules [Winston, 1975]. For instance,
a child cannot distinguish between a cat and a dog. But as he grows, he
can do so, based on numerous examples of each animal given to him.
Learning involves a teacher, who helps to classify things by correcting the
mistake of the learner each time. In machine learning, a program takes the
place of a teacher, discovering the mistakes of the learner. Numerous
methods and techniques of learning have been developed and classified as
supervised, unsupervised and reinforcement learning [Baldi, 1995; Carpenter
et al., 1987; Lee et al., 1997].

1.1 Introduction to the Model of Cognition 5

Planning: The state of planning engages itself to determine the steps of
action involved in deriving the required goal state from known initial states
of the problem. The main task is to identify the appropriate piece of
knowledge derived from LTM at a given instance of time [McDermott et
al., 1984]. Then planning executes this task through matching the problem
states with its perceptual model.

Action and coordination: This state determines the control commands for
various actuators to execute the schedule of the action plan of a given
problem, which is carried out through a process of supervised learning
[Maes & Brooks, 1990]. The state also coordinates between various de-
sired actions and the input stimuli.

Cognitive memory: Sensory information is stored in the human brain at
closely linked neuron cells. Information in some cells may be preserved
only for a short duration, which is referred to as short term memory
(STM). Further, there are cells in the human brain that can hold informa-
tion for quite a long time, which is called long term memory (LTM). STM
and LTM could also be of two basic varieties, namely iconic memory and
echoic memory. Iconic memory can store visual information whereas the
echoic memory deals with audio information. These two types of memo-
ries together are generally called sensory memory. Tulving alternatively
classified human memory into three classes, namely episodic, semantic
and procedural memory [Tulving, 1987]. Episodic memory saves the facts
as they happen; semantic memory constructs knowledge in structural form,
whereas procedural memory helps in taking decisions for actions.

1.1.2 Cycles of Cognition

Acquisition cycle: The task of the acquisition cycle is to store the infor-
mation temporarily in STM after sensing the information through various
sensory organs. Then it compares the response of the STM with already
acquired and permanently stored information in LTM. The process of rep-
resentation of the information for storage and retrieval from LTM is a
critical job, which is known as knowledge representation. It is not yet
known how human beings store, retrieve and use the information from
LTM.

Perception cycle: This is a cycle or a process that uses the previously
stored knowledge in LTM to gather and interpret the stimuli registered by
the sensory organs through the acquisition cycle [Gardener, 1985]. Three

6 1 Cybernetic View of Robot Cognition and Perception

relevant states of perception are reasoning, attention and recognition, and
are generally carried out by a process of unsupervised learning. Here, we
can say that the learning is unsupervised, since such refinement of knowl-
edge is an autonomous process and requires no trainer for its adaptation.
Therefore, this cycle does not have “Learning” as an exclusive state. It is
used mainly for feature extraction, image matching and robot world mod-
eling. We will discuss human perception in detail in the next section, with
applications.

Learning and coordination cycle: Once the environment is perceived and
stored in LTM in a suitable format (data structure), the autonomous system
utilizes various states namely learning, planning and action and coordina-
tion [Caelli & Bischob, 1997]. These three states taken together are called
the Learning and Coordination Cycle, which is utilized by the robot to
plan its action or movement in the environment.

 Cognition, being an interdisciplinary area, has drawn the attention of re-
searchers of diverse interest. Psychologists study the behavioral aspects of
cognition and they have constructed a conceptual model that resembles the
behavior of cognition with respect to biological phenomena. On the other
hand, the engineering community makes an attempt to realize such behav-
ior on an intelligent agent by employing AI and soft computing tools. The
robot as an intelligent agent receives sensory signals from its environment
and acts on it through its actuators as well as sensors to execute physical
tasks.

This book covers techniques for feature extraction, image matching,
machine learning and navigation using the cognitive method. A mobile ro-
bot senses the world around it through different transducers, such as ultra-
sonic sensors, laser range-finders, drives and encoders, tactile sensors, and
mono or stereo cameras. The sensory information obtained by a robot is
generally contaminated with various forms of noise. For instance, ultra-
sonic sensors and laser range-finders sometimes generate false signals, and
as a consequence determination of the direction of an obstacle becomes
difficult. The acquisition cycle filters the contaminated noise and transfers
the noise-free information to the LTM. The perception cycle constructs
new knowledge of the robot’s environment from the noise-free sensory in-
formation. The learning and coordination cycle executes various tasks as-
signed to it. These three cycles, along with their states, are utilized in mod-
eling various techniques. The proposed work borrows the ideas from the
model of cognition and implements them through various soft computing
tools. The subsequent sections discuss issues like machine learning and
perception in detail.

1.2 Visual Perception 7

1.2 Visual Perception

Vision is the most powerful sense organ of human beings and it is also the
key sensory device for a mobile robot. So far, not much progress has yet
been achieved in visual perception of a mobile robot due to limitations in
hardware and software. Visual processing requires specialized hardware and
cameras, which are quite large to fit into the mobile robot. Secondly, tradi-
tional software for vision processing is very poor in quality, because it re-
quires complete analysis of the entire scene even to recognize a minute ob-
ject. Further, detection of an obstacle in front of the robot using stereovision
takes a longer time, which is not at all permissible for online navigation.

As there is a shift in paradigm towards the behavioral model, research-
ers have started examining animal models for both motor control and per-
ception. The research findings reveal that the frog uses simple visual mo-
tion detection to catch flying prey and bees depend on specific aspects of
the color spectrum for their search. Psychological study indicates that the
human visual system supports very simple behavior. Low resolution pe-
ripheral vision is used to watch for indications of motion, for instance col-
lision with looming objects, whereas the high resolution fovea is used to
gather information for reasoning about an object. Human vision does not
perceive everything in all its color, motion and temporal dimensions at one
time but direct attention is given to a very narrow portion of the visual
field based on the task they are performing. As a result of this study, the
paradigm in vision is shifted to a philosophy where perception exists to
support the behavior of robots [Murphy et al., 1998].

Dickmann studied two major principles of perception during the 1980s.
The first one was about the evolving process and internal representation of
the world, which is known as Schopenhauer’s idea of perception, and the
second one was Kant’s theory of the true reality of perception. With these
two principles, Dickmann could represent various systems, including real
time constraint using the notion of space and time [Zavidovique, 2002].
Human beings acquire knowledge of their surroundings unconsciously
during their first years of crawling, then walking and reacting. Let us dis-
cuss a little more, the physiology and anatomy of the human visual system,
which may help in understanding robot vision.

1.2.1 Human Visual System

The human visual system converts energy in the visible spectrum into ac-
tion potentials in the optic nerves. The wavelength of visible light ranges

8 1 Cybernetic View of Robot Cognition and Perception

from approximately 390 nm to 720 nm. In the human eye, light is actually
refracted at the anterior surface of the cornea and at the anterior and poste-
rior surface of the lens. The process of refraction is shown schematically
in Fig. 1.2.

The images of objects in the environment are focused on the retina. The
light rays striking the retina generate potential changes that initiate action
potentials on photosensitive compounds such as rods and cones. When the
compound absorbs light, the structure changes and triggers a sequence of
events that initiate neural activity. The human eye contains about 130 mil-
lion rods and approximately 8 million cones. Rods are monochrome re-
ceptors of light, and cones are sensitive to color, which are different parts
of the spectrum [Seculer et al., 1990]. The distribution of rods and cones in
the retina is very irregular. The detailed spatial representation of the retina
is in the form of electrical responses transmitted to the lateral geniculate
nucleus (LGN) via retinal ganglion cells (RGC). Subsequently, LGN pro-
jects a similar point-to-point representation on the visual cortex, where
these electrical responses produce the sensation of vision.

1.2.2 Vision for Mobile Robots

Vision is the fundamental part of perception in intelligent robots, the way
it is for humans. The perception objective depends on three basic system
qualities, namely rapidity, compactness and robustness. Active vision is
the theoretical analysis of the vision process originated by Aloimonos et al.
[Aloimonos, 1987; Fermuller & Aloimonos, 1993] to optimize the 3D

Fig. 1.2. A schematic diagram of human vision. n = nodal point, AnB and anb are
similar triangles. In this diagram, the nodal point is 15 mm from the retina. All re-
fraction is assumed to take place at the surface of the cornea, 5 mm from the nodal
point. The dotted lines represent rays of light diverging from A and refracted at the
cornea so that they are focused on the retina at ‘a’

1.2 Visual Perception 9

reconstruction; and animate vision [Ballard, 1991], which is based on hu-
man perception analysis. Perception is an essential and most useful process
for a mobile robot. To operate the mobile robot in unknown and unstruc-
tured environments, the robot must be able to perceive its environment suf-
ficiently so as to operate safely in its environment. It is clear from study of
the animal visual system that the animals concentrate on a specific part of
the image received through their visual system, or in other words animal
visual system does the task-specific visual processing. This philosophy has
been borrowed to develop a task-oriented approach for sensing, planning
and control.

In the realm of autonomous control, let us briefly mention visually
guided control systems and the role of computer vision in autonomously
guided robot systems. Hashimoto has introduced a closed-loop control sys-
tem for visually guided manipulators [Hashimoto, 1999]. Visual informa-
tion about tasks and the environment is essential for robots to execute
flexible and autonomous tasks. A typical task of autonomous manipulation
is to track a moving object with the robot hand, based on information from
a vision sensor. To carry out this job, Hashimoto introduced a feedback
loop with vision sensor, which can track a moving obstacle (Khepera ro-
bot) that moves on the floor. Sullivan et al. [Sullivan, 1999] introduced a
system that tracks a moving, deformable object in the workspace of a ro-
botic arm fitted with a camera. For their experiment, they used a figure-
ground approach for object detection and identification. The figure-ground
methodology allows pixels to be identified as objects or background pix-
els, a distinction which is useful during the initial placement of the active
deformable model.

The evolution of machine perception has taken place during the last few
decades [Zavidovique, 2002; Merlo et al., 1987]. The first system for sig-
nal analysis and pattern recognition was designed on a commercial com-
puter in which a special-purpose interface was built for data acquisition us-
ing standard cameras and microphones. At that time, serious limitations
were faced in signal transfer rate and core memory. Both sound and image
preprocessing was developed during the 1970s using ad hoc hardware and
suitable algorithms. Later, to improve the machine perception strategies,
the link between sensing and processing was operated in a closed loop to
obtain so-called active perception. Active perception is the study of per-
ception strategies including sensor and signal processing cooperation, to
achieve knowledge about the environment [Merlo et al., 1987]. Both high
level and low level image processing need to consider perceptual informa-
tion in order to reduce uncertainty.

10 1 Cybernetic View of Robot Cognition and Perception

Initially, the aim of the robot vision designer was to build the simplest
possible system that was necessary to solve a given task and use its per-
formance to improve its architecture. Horswill has developed a low cost
vision system for navigation called the POLLY System, where the devel-
opment team has used active, purposeful and task-based vision [Horswill,
1993], which computes the specific information needed to solve specific
tasks. Murphy has introduced another model of sensing organization called
action-oriented perception for a mobile robot, with multiple sensors per-
forming locomotive tasks [Murphy, 1998], and work on robot vision and
perception is still continuing as a major research topic.

1.3 Visual Recognition

As mentioned earlier, recognition is the important component of percep-
tion. Human beings are able to perceive and move around in a dynamic
world without any difficulty but robot vision requires a large amount of
computing resources and background knowledge for a very limited and
static environment. There are many hypotheses of representation for vari-
ous shape recognition techniques [Caelli & Bischob, 1997]. The represen-
tation contains information about the shape and other properties such as
color, dimensions and temporal information, including a label, i.e. a name
of the object. The objective is to retrieve the label correctly during the rec-
ognition process. Representations are stored in LTM as a set of separable
symbolic objects or class of objects.

Recently developed models do not use a representation that is a direct
replica of the retinal stimulation. Rather, they introduce the representation
which deals with invariant properties of different objects in various posi-
tions, sizes, rotations, and even under different lighting conditions. During
recognition, the captured image corresponding to an unknown object is
converted to the same format and representations, which provides the best
match using the same form of similarity measure. Each theory may have
different assumptions regarding various parameters, such as:

• Type of representation, i.e. feature space, predicates, graph, etc.
• The number of representations per object, i.e. one 3D representation or

multiple 2D representations from different viewing positions
• The number of classes for mapping into representations
• Inclusion of spatial relationships between objects and their component parts
• The amount and type of preprocessing given to the initial retinal image

matching algorithm.

1.3 Visual Recognition 11

The primary issues in the visual recognition process are representations
and search, which means how to develop an appropriate representation for
the objects and then how to search them efficiently for a match at the time
of recognition. Here are some representations used in traditional theories.

1.3.1 Template Matching

Template matching is the simplest form of representation in which a rep-
lica of the retinal stimulation pattern projected by a shape is stored in
LTM. The recognition process compares all stored object templates with
the input array by selecting the best match based on the ratio of matching
to non-matching objects [Briscoe, 1997].

There are many problems with this method which prevent recognition,
such as: (i) partial matches can give false results, for example comparing
‘O’ with ‘Q’; (ii) any change in the distance, location or orientation of the
input object in relation to the corresponding stored object will produce a
different pattern; and (iii) any occlusion, shadow or other distortion of the
input object may also produce inaccurate matching.

Some systems, for example, attempt to compensate for these problems
by storing multiple templates, each recorded at various displacements, ro-
tations and sizes. However, the combinatorics of the transformations usu-
ally prove to be cumbersome. The option of rotating, displacing or scaling
of the input pattern to a canonical form before matching is also not feasi-
ble, as the required transformations cannot be known until the object is
recognized. But the major limitation of this representation is that it is only
appropriate for an object recorded in isolation. The template models are
not useful at all if multiple objects are present in a scene, because the
method is unable to determine which parts belong to which object.

1.3.2 Feature-Based Model

Instead of storing templates for entire shapes, the feature-based model util-
izes a series of feature detectors. Generally the features included are of a
geometric type such as vertical and horizontal lines, curves and angles.
Feature detectors may be used either at every position in the input array, or
may be used for the global image. In case of multiple feature detectors, the
degree of matching is estimated for the target feature with respect to each
section of the input array. The levels of activation for each feature may be
summed up across the input array by providing a set of numbers for each
feature. This list of numbers in the form of a vector of weights for different
features is used as the stored representation of the object. The objective is

12 1 Cybernetic View of Robot Cognition and Perception

to define the shape of the object with invariant features, which are inde-
pendent of locations. The process of recognition consists of finding the
best match between the stored representations and the levels of activation
of the feature detectors in the input image.

1.3.3 Fourier Model

In the Fourier model, a two-dimensional input array is subjected to a spa-
tial Fourier analysis. In this model, the original array is decomposed into a
set of spatial frequency components of various orientations and frequen-
cies in the form of sinusoidal waveforms. The amplitude and phase are
both recorded for the spectrum of spatial frequencies and angles. Thus the
original image is represented as the sum of the spatial frequency compo-
nents and this transform retains all the details of the original image. The
feature of this model is that it gives no restriction on angles, frequencies
and no computational problems, such as aliasing. Even though the ampli-
tude spectrum contains shape information and the phase spectrum contains
position information, there is no method available for combining this in-
formation in order to locate a particular object at a particular location.

Each shape is stored in the memory in the form of its Fourier transform
and its recognition is done by matching this with a similarly transformed
input image. This model separates information about sharp edges and
small details from other information pertaining to gross overall shape.
Techniques such as edge detectors and convolutions may be used to extract
these different details of the original image. The advantage of this model is
that it can also match blurred edges, wiggly lines and other slightly dis-
torted images.

1.3.4 Structural Model

The structural model contains information about the relative positions and
relationships between parts of an object. This structural description is
stored in memory in the form of a data structure such as a list or tree or
graph of predicates. The representation is often depicted as a graph, where
nodes correspond to the parts or the properties, and the edges correspond
to the spatial relations [Minsky, 1975]. The advantage of structural repre-
sentation is that it factors apart the information in a scene without losing
any part of it. This model enables us to represent the object with the help
of a list of labels and also their relative position and orientation with
respect to the human observer. Various spatial reasoning operations may
be performed by specifying the shape, location, orientation and spatial

1.4 Machine Learning 13

relationship of one set of objects with other objects in another set. The rec-
ognition process can be improved by including statistical and logical
operations. The use of structural descriptions appears to be preferred
because of computational convenience.

1.3.5 The Computational Theory of Marr

The work of David Marr [Marr, 1982] is one of the best examples of the
computational approach to the recognition problem, which is the most in-
fluential contemporary model of 3D shape recognition. Marr introduced
the need to determine edges of an object and constructed a 2½ D model,
which carries more information than 2D but less than a 3D image. Thus
an approximate guess about the 3D object can be framed from its 2½ D
images.

1.4 Machine Learning

Since the invention of the computer there was always the question of how
to make them learn. If we could understand how to program them to learn,
i.e. to improve automatically with experience, it would have been a great
achievement. A successful understanding of how to make them learn
would open up many new uses of computers and new levels of competence
and customization. Further, a detailed understanding of machine learning
might lead to further investigation of human learning ability and disabili-
ties. Machine learning algorithms have been investigated by a number of
researchers. These are effective for certain types of learning tasks and as a
result a theoretical understanding of learning started to emerge. Broadly
speaking learning means any computer program that improves its perform-
ance for some tasks through experience.

1.4.1 Properties and Issues in Machine Learning

The formal definition of learning is: A computer program is said to learn
from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T as measured by P improves
with experience E [Mitchell, 1997]. To give a specific example of learn-
ing, let us consider an example of an autonomous driven vehicle. The ma-
chine learning method has been used to train a computer-trained vehicle to
steer correctly when driving on a variety of roads. For instance, the

14 1 Cybernetic View of Robot Cognition and Perception

ALVINN system [Pomerleau et al., 1989] has used its learned strategies to
drive unassisted at 70 miles/hour for 90 minutes on public highways
among other cars. Similar techniques have possible applications in many
sensor-based control systems. This learning problem of autonomous driven
systems can be formally defined as

Task T: driving on public highways using vision sensors.
Performance measure P: average distance traveled before an error occurs

as judged by a human observer.
Training experience E: a sequence of images and steering commands re-

corded while observing a human driver.

There are various factors to be considered while designing a learning
system, which are given as follows.

Choosing the training experience: The type of training experience avail-
able can have a significant impact on the success or failure of the learner.
There are a few key attributes to contribute to the success of the learner.
The first key is whether the training experience provides direct or indirect
feedback regarding the choices made by the performance system. The sec-
ond attribute of the training experience is the degree to which the learner
controls the sequence of training examples. The next attribute is how well
it represents the distribution of examples over which the final system per-
formance P must be measured. Generally speaking, learning is most reli-
able when the training examples follow a distribution similar to that of
future test examples.

Choosing the target function: This is to determine exactly what type of
knowledge will be learned and how this will be used by the performance
program. In other words, the task is to discover an operational description
of the ideal target function or an approximation to the target function.
Hence, the process of learning the target function is often called the func-
tion approximation.

Choosing the representation of a target function: A representation of
the target function has to be described for the learning program to learn.
In general the choice of representation involves a crucial trade-off. On one
hand, a very expressive representation has to be picked up in order to ob-
tain an approximate representation function as close as possible to the ideal
target function. On the other hand, the program will require more training
data for the more expressive representation. Therefore, it is advisable to

1.4 Machine Learning 15

choose an alternative representation, which can accommodate a broad state
of training data and function.

Choosing a function approximation algorithm: In order to learn the
target function, a set of befitting training examples is required. For in-
stance, in the case of robot navigation a set of sensory readings and robot
movement forms a set of training patterns for learning. After the derivation
of the training examples from the training experience available to the
learner, the weights have to be adjusted to best fit these training examples.

One of the useful perspectives on machine learning is that it involves
searching every large space of possible hypotheses to determine one that
best fits the observed data and any prior knowledge held by the learner.
The machine learning algorithm has proven itself useful in a number of
application areas, such as:

• poorly understood domains where humans might not have required

knowledge to develop effective algorithms, for example human face
recognition from images;

• domains where the program must dynamically adapt to changing condi-
tions, for example controlling manufacturing process under changing
supply stock;

• they are especially useful in data mining problems where large data-
bases may contain valuable implicit regularities that can be discovered
automatically.

1.4.2 Classification of Machine Learning

Machine learning can be broadly classified into three categories: (i) su-
pervised learning, (ii) unsupervised learning and (iii) reinforcement
learning. Supervised learning requires a trainer, who supplies the input–
output training instances. The learning system adapts its parameters using
some algorithms to generate the desired output patterns from a given input
pattern. But, in the absence of trainers, the desired output for a given input
instance is not known, and consequently the learner has to adapt its pa-
rameters autonomously. This type of learning is termed unsupervised
learning. There is a third type of learning, known as reinforcement learn-
ing, which bridges the gap between supervised and unsupervised catego-
ries. In reinforcement learning, the learner does not explicitly know the
input–output instances, but it receives some form of feedback from its en-
vironment. The feedback signals help the learner to decide whether its ac-
tion on the environment is rewarding or punishable. The learner thus

16 1 Cybernetic View of Robot Cognition and Perception

adapts its parameters based on the states of its actions, i.e. rewarding or
punishable. Recently, a fourth category of learning has emerged from the
disciplines of knowledge engineering, which is known as inductive logic
programming [Konar, 2000].

Supervised learning: In supervised learning a trainer submits the input–
output exemplary patterns and the learner has to adjust the parameters of
the system autonomously, so that it can yield the correct output pattern
when excited with one of the given input patterns. Inductive learning
[Michalski, 1983] is a special class of the supervised learning technique,
where, given a set of {xi, f(xi)} pairs, a hypothesis h(xi) is determined such
that h(xi) ≈ f(xi), ∀i. This demonstrates that a number of training instances
are required to form a concept in inductive learning.

Unsupervised learning: Unsupervised learning employs no trainer and
the learner has to construct concepts by experimenting on the environment.
The environment responds but fails to identify which ones are rewarding
and which ones are punishable activities. This is because of the fact that
the goals or the outputs of the training instances are unknown. Therefore,
the environment cannot measure the status of the activities of the learner
with respect to the goals. One of the simplest ways to construct a concept
by unsupervised learning is through experiments. For example, suppose a
child throws a ball to the wall; the ball bounces and returns to the child.
After performing this experiment a number of times, the child learns the
‘principle of bouncing’, which is an example of unsupervised learning.

An intelligent system should be able to learn quickly from large
amounts of data [Kasabov, 1998]. It is also stated that the machine should
adapt in real time and in an online mode as new data is encountered. It
should be memory based and possess data and exemplary storage and re-
trieval capacities. Secondly, the system should be able to learn and im-
prove through active interaction with the user and the environment. But
not much progress has been achieved for this learning to date.

Reinforcement learning: In reinforcement learning, the learner adapts its
parameter by determining the status, i.e. reward or punishment of the feed-
back signals from its environment. The simplest form of reinforcement
learning is adopted in learning automata. Currently Q learning and tempo-
ral difference learning have been devised based on the reward/punishment
status of the feedback signals.

1.5 Soft Computing Tools and Robot Cognition 17

1.5 Soft Computing Tools and Robot Cognition

A collection of tools shared by artificial neural nets, fuzzy logic, genetic
algorithms, belief calculus, and some aspects of inductive logic program-
ming are known as soft computing tools. These tools are used independ-
ently as well as jointly depending on the type of the domain of application
[Jain, 1999]. According to Zadeh, soft computing is “an emerging ap-
proach for computing, which parallels the remarkable ability of the human
mind to reason and learn in an environment of uncertainty and impreci-
sion” [Zadeh, 1983]. The scope of these tools in modeling robot cognition
is outlined below.

1.5.1 Modeling Cognition Using ANN

As we know the goal of cognitive modeling is the development of algo-
rithms that require machines to perform cognitive tasks at which humans
are presently better [Haykins, 1999]. A cognitive system must be capable
of (i) sensing the external environment and storing it in the form of knowl-
edge, (ii) applying the knowledge stored to solve problems, and (iii) ac-
quiring new knowledge through experience. To perform this task the ma-
chine needs representation, reasoning and learning.

Machine learning may involve two different kinds of information proc-
essing, i.e. inductive and deductive. In inductive processing, generally pat-
terns and rules are determined from raw data and experience; whereas in
deductive processing general rules are used to determine specific facts.
Similarity-based learning uses induction whereas the proof of a theorem is
a deduction from known axioms and other existing theorems. Both induc-
tion and deduction processing can be used for explanation-based learning.
The importance of knowledge bases and difficulties experienced in learn-
ing has led to the development of various methods for supplementing
knowledge bases. Specifically, if there are experts in a given field, it is
usually easier to obtain the compiled experience of the experts, rather than
use direct experience. In fact, this is the idea behind the development of
neural networks as a cognitive model. Let us compare neural networks
with the cognitive model with respect to three aspects, namely level of ex-
planation, style of processing and representation of structure.

Level of explanation: In traditional machine intelligence, the emphasis is
given to building symbolic representations of the problem. It assumes the
existence of a mental representation and it models cognition as the sequen-
tial processing of symbolic representations [Newell et al., 1972]. On the

18 1 Cybernetic View of Robot Cognition and Perception

other hand, a neural network emphasizes the development of parallel dis-
tribution processing models. These models assume that information proc-
essing takes place through the interaction of a large number of neurons,
each of which sends excitatory and inhibitory signals to other neurons in
the network [Rumelhart et al., 1986]. Moreover, neural networks give
more emphasis to the neurobiological explanation of cognitive phenomenon.

Style of processing: In traditional machine intelligence, processing is se-
quential as in typical computer programming. Even when there is no pre-
determined order, the operations are performed in a stepwise manner. On
the other hand, neural networks process the information in parallel and
provide flexibility about the structure of the source. Moreover, parallelism
may be massive which gives neural networks a remarkable form of robust-
ness. With the computation spread over many neurons, it usually does not
matter much if the states of some neurons in the network deviate from their
expected values. Noisy or incomplete inputs may still be recognized, and
may be able to function satisfactorily and therefore learning does not have
to be perfect. Performance of the network degrades within a certain range.
The network is made even more robust by virtue of coarse coding, where
each feature is spread over several neurons [Hinton, 1981].

Representation of structure: In traditional machine intelligence, repre-
sentation is done through a language of thought, which possesses a quasi-
linguistic structure. These are generally complex to build in a systematic
fashion from simple symbols. In contrast, the nature and structure of repre-
sentation is very crucial in neural networks. For implementation of cogni-
tive tasks, a neural network emphasizes the approach to building a struc-
ture connectionist model that integrates them. As a result a neural network
combines the desirable features of adaptability, robustness and uniformity
with representation and inference [Feldman, 1992; Waltz, 1997].

The ANNs adjust the weights of the neurons between different layers
during the adaptation cycle. The adaptation cycle is required for updating
various parameters of the network, until a state of equilibrium is reached,
following which the parameters no longer change. ANNs support both su-
pervised and unsupervised learning as mentioned earlier. The supervised
learning algorithms realized with ANN have been successfully applied in
control, automation, robotics and computer vision [Narendra et al., 1990].
On the other hand, unsupervised learning algorithms built with ANNs have
been applied in scheduling, knowledge acquisition [Buchanan, 1993],
planning [McDermott et al., 1984] and analog to digital conversion of data
[Sympson, 1988].

1.5 Soft Computing Tools and Robot Cognition 19

1.5.2 Fuzzy Logic in Robot Cognition

Fuzzy logic deals with fuzzy sets and logical connectives for modeling
the human-like reasoning problems of the real world. A fuzzy set, unlike
conventional sets, includes all elements of the universal set of the domain
with varying membership values in the interval [0,1]. It may be noted
that a conventional set contains its members with a membership value
equal to one and disregards other elements of the universal set with a
zero membership value. The most common operators applied to fuzzy
sets are AND (minimum), OR (maximum) and negation (complementa-
tion), where AND and OR have binary arguments, while negation has a
unary argument. The logic of Fuzzy Set Theory was proposed by Zadeh
[Zadeh, 1983], who introduced the concept of system theory, and later
extended it for approximate reasoning in expert systems. Other pioneer-
ing research contributions on Fuzzy Logic include the work of Tanaka in
stability analysis of control systems [Tanaka, 1995], Mamdani in cement
kiln control [Mamdani, 1977], Kosko [Kosko, 1994] and Pedrycz
[Pedrycz, 1995] in Fuzzy Neural Nets, Bezdek in Pattern Classification
[Bezdek, 1991], and Zimmerman [Zimmerman, 1991] and Yager [Yager,
1983] in Fuzzy Tools and Techniques.

Fuzzy logic has become a popular tool for robot cognition in recent
years [Saffioti, 1997]. Given the uncertain and incomplete information
about the environment available to the autonomous robot, fuzzy rules pro-
vide an attractive means for mapping ambiguous sensor data to appropriate
information in real time. The methodology of fuzzy logic appears very
useful when the processes are too complex for analysis by conventional
quantitative techniques or when the available sources of information are
interpreted qualitatively, inexactly, or uncertainly, which is the case with
mobile robots. However, fuzzy logic parameters are usually determined by
domain experts using a trial and error method. Also, as the number of input
variables increases, in the case of mobile robots, the number of rules in-
creases exponentially, and this creates much difficulty in determining a
large number of rules.

1.5.3 Genetic Algorithms in Robot Cognition

Genetic algorithms (GAs) are stochastic in nature, and mimic the natural
process of biological evolution [Rich et al., 1996]. This algorithm borrows
the principle of Darwinism, which rests on the fundamental belief of the
survival of the fittest in the process of natural selection of species. GAs find
extensive applications in intelligent search, machine learning and optimization

20 1 Cybernetic View of Robot Cognition and Perception

problems. The problem states in a GA are denoted by chromosomes, which
are usually represented by binary strings. The most common operators used
in GAs are crossover and mutation. The evolutionary cycle in a GA consists
of the following three sequential steps [Michalewicz, 1986];

(i) generation of a population (problem states represented by chromo-

somes)

(ii) selection of better candidate states from the generated population

(iii) genetic evolution through crossover followed by mutation.

In step (i) a few initial problem states are first identified and in step (ii) a
fixed number of better candidate states are selected from the generated
population. Step (iii) evolves a new generation through the process of
crossover and mutation. These steps are repeated a finite number of times
to obtain the solution for the given problem.

GAs have been successfully applied to solve a variety of theoretical and
practical problems by imitating the underlying processes of evolution, such
as selection, recombination, and mutation. The GA-based approach is a
well-accepted technique for enabling systems to adapt to different control
tasks [Filho, 1994]. But, it is not feasible for a simple GA to learn online and
adapt in real time. The situation is worsened by the fact that most GA meth-
ods developed so far assume that the solution space is fixed, thus preventing
them from being used in real-time applications [Michalewicz, 1986].

1.6 Summary

This chapter briefly highlights the development of various models of mo-
bile robots and the paradigm shift towards the model of cognition. A
model of cognition has been introduced here, which will be realized for
various tasks of simulated robots as well as for the mobile robots in subse-
quent chapters. The chapter defines the term ‘cognition’ along with its em-
bedded cycles namely the acquisition cycle, perception cycle, learning and
coordination cycle and their associated states. A brief review of visual per-
ception, visual recognition and machine learning has been given in subse-
quent sections. The application of various soft computing tools like fuzzy
logic, genetic algorithms and artificial neural networks for robot cognition
has also been outlined.

2 Map Building

2.1 Introduction

The phrase map building [Patnaik et al., 1998] refers to the construction
of a map of the work space autonomously by the robot, which enables the
robot to plan the optimal path to the goal. Map building helps the mobile
robot to become conversant with the world around it. The information
about the neighborhood world of the robot is thus required to be encoded
in the form of a knowledge base. For the purpose of navigational plan-
ning, a mobile robot must acquire knowledge about its environment. This
chapter demonstrates the scope of map building of a mobile robot of its
workspace.

It is evident from the discussion in the last chapter that the acquisition of
knowledge is a pertinent factor in the process of building perception. Hu-
man beings can acquire knowledge from their environment through a
process of automated learning. Machines too can acquire knowledge by
sensing and integrating consistent sensory information. A number of tech-
niques are prevalent for automated acquisition of knowledge. The most
common among them are unsupervised and reinforcement learning tech-
niques. In an unsupervised learning scheme, the system updates its pa-
rameter by the analyzing consistency of the incoming sensory information.
Reinforcement learning, on the other hand, employs a recursive learning
rule that adopts the parameters of the systems, until convergence occurs,
following which the parameters become time invariant. The chapter in-
cludes a technique for constructing a 2D world map by a point mass robot
with its program written in C++.

22 2 Map Building

2.2 Constructing a 2D World Map

It is assumed that the height of the robot is less than that of the obstacles
within the workspace. In fact, most of the navigational problems for robots
are confined to two-dimensional environments. The algorithm for map
building in a 2D environment is given below.

There exist two different types of algorithms for automated map build-
ing. The first one refers to landmark-based map building [Taylor et al.,
1998]and the second one is metric-based map building [Asada, 1990;
Elfes, 1987; Pagac et al., 1998]. Offline map building is discussed here
utilizing a metric-based approach [Patnaik et al., 1998]. Further, to main-
tain the order in the traversal of the robot around the obstacles, a directed
search is preferred here. The depth-first search, which is a directed search
technique, is being utilized here.

2.2.1 Data Structure for Map Building

Let us consider a circular mobile robot (shown in Fig. 2.1) that can orient
itself in any of the following eight directions: north (N), north-east (NE),
east (E), south-east (SE), south (S), south-west (SW), west (W) and north-
west (NW).

Fig. 2.1. The representation of a circular robot with eight ultrasonic sensors
around it in eight geographical directions

Robot

S

E

SE

NE

N

NW

W

SW

2.2 Constructing a 2D World Map 23

In the depth-first algorithm, the following strategy is used for traversal
within the workspace. The detail explanation is given in the next section:

If there is an obstacle in N

Then move to the nearest obstacle in N
If there is an obstacle in NE

Then move to the nearest obstacle in NE
If there is an obstacle in E

Then move to the nearest obstacle in E
………………………………………………
………………………………………………
If there is an obstacle in NW

Then move to the nearest obstacle in NW

If the above steps are executed recursively, then the robot would have a
tendency to move to the north so long as there is an obstacle in the north,
else it moves north-east. The process is thus continued until all the obsta-
cles are visited. Another point needs to be noted here, that after moving to
an obstacle, the robot should move around it to identify the boundary of
the obstacles. Thus when all the obstacles are visited a map representing
the boundary of all obstacles will be created. This map is hereafter referred
to as the 2D world map of the robot. Two procedures are given below, i.e.
Map Building and Traverse Boundary. In the procedure Map
Building a linked list structure is used with four fields. The first two
fields, xi, yi denote the coordinate of the point visited by the robot. The
third field points to the structures containing the obstacle to be visited next,
and the fourth field denotes the pointer to the next point to be visited on
the same obstacle. A schematic diagram depicting the data structure is pre-
sented in Fig. 2.2. Another data structure is used in procedure Map
Building for acquiring the boundary points visited around an obstacle.
This structure has three fields, the first two correspond to the xi, yi coordi-
nate of one visited point on the obstacle i, while the third field is a pointer
which corresponds to the next point on obstacle i. A schematic diagram for
this pointer definition is presented in Fig. 2.3.

24 2 Map Building

Fig. 2.2. Definition of one structure with two pointers, used for acquiring the list
of visited obstacles

Fig. 2.3. Definition of another structure with one pointer for acquiring the bound-
ary points visited around an obstacle

Procedure Traverse Boundary (current-coordinates)
Begin
Initial-coordinate = current-coordinate;
Boundary-coordinates:= Null;
Repeat
Move-to (current-coordinate) and mark the path of traversal;
Boundary-coordinates: = Boundary-coordinates ∪ {current-coordinate};
For (all possible unmarked set of point P)
Select the next point p ε P, such that
The perpendicular distance from the next point p to
Obstacle boundary is minimum;
Endfor

xi yi

Coordinates of (xi,yi) points
visited by the robot

Pointer to the structure,
containing the obstacle to be

visited next

Pointer to the next point to
be visited on the same ob-

stacle

xi yi

Coordinates of one visited point
on obstacle i

Pointer to the next point on
the same obstacle

 current-coordinate := next-coordinate;

2.2 Constructing a 2D World Map 25

Until current-coordinate = initial-coordinate
Return Boundary-coordinates;
End.

The above algorithm is self-explanatory and thus needs no elaboration. An
algorithm for map building is presented below, where the procedure Tra-
versal Boundary has been utilized.

Procedure Map Building (current-coordinate)
Begin
Move-to(current-coordinate);
Check-north-direction();
If (new obstacle found) Then do
Begin
Current-obstacle = Traverse-boundary(new-obstacle-coordinate);
Add-obstacle-list (current-obstacle); //adds current obstacle to list//
Current-position = find-best-point (current-obstacle) // finding the best

take off point from the current obstacle//
Call Map-building (current-position);
End
Else do Begin
Check-north-east-direction ();
If (new obstacle found) Then do
Begin
Current-obstacle = Traverse-boundary(new-obstacle-coordinate);
Add-obstacle-list (current-obstacle);
Current-position = find-best-point (current-obstacle);
Call Map-building (current-position);
End;
Else do Begin
Check east direction();
//Likewise in all remaining directions//
End
Else backtrack to the last takeoff point on the obstacle (or the starting
point);
End.

Procedure Map Building is a recursive algorithm that moves from an
obstacle to the next following the depth-first traversal criteria. The order of
preference of visiting the next obstacle comes from the prioritization of the

26 2 Map Building

directional movements in a given order. The algorithm terminates by back-
tracking from the last obstacle to the previous one and finally to the start-
ing point.

2.2.2 Explanation of the Algorithm

The procedure Map Building gradually builds up a tree, the nodes of
which denote the obstacles/boundary visited. Each node in the tree keeps
a record of the boundary pixel coordinates. The procedure expands the
node satisfying the well-known depth-first strategy. For instance, let ni be
the current root node. The algorithm first checks whether there exists any
obstacle in the north direction. In case it exists, the algorithm allows the
robot to move to an obstacle to the north of ni, say at point nj. The
boundary of the obstacle is next visited, by the robot, until it reaches the
point nj. The algorithm then explores the possibility of another obstacle
to the north of nj, and continues so until no obstacle is found to the north
of a point, say nk on an obstacle. Under this circumstance only, the algo-
rithm checks for possible obstacle to the north-east of point nk. It is thus
clear how depth-first search has been incorporated in the proposed algo-
rithm. It needs to be pointed out that once the robot visits the boundary
of an obstacle, the corresponding pixel-wise boundary descriptors are
saved in an array.

The algorithm terminates when it reaches an obstacle at a point ni and
moves around its boundary but couldn’t trace any obstacle in any of the
possible eight direction around ni. It then backtracks to the nodes, from
where it visited node ni. Let nj be that parent node of ni in the tree. Again if
there exist no obstacles in any of the possible eight directions around nj,
then it backtracks to the parent of nj. The process of backtracking thus con-
tinues until it returns to the starting point. The following properties envis-
age that the proposed algorithm is complete and sound.

Property 1: The procedure Map Building is complete.

Proof: By completeness of the algorithm, we mean that it will visit all ob-
stacles and the floor boundary before termination.

Let us prove the property by the method of contradiction, i.e. there

remains one or more obstacles before the termination of the algorithm.
Now, since the algorithm has been terminated, there must be several
backtrackings from nm to nk, nk to nj, nj to ni and so until the root node
of the entire tree is reached. This can only happen if no points on an

2.2 Constructing a 2D World Map 27

unvisited obstacle is along any of the eight possible directions of the
points on all visited obstacles. The last statement further implies that
the unvisited obstacle, say OX, is completely surrounded by other unvis-
ited obstacles OK such that ∪ Ok covers the entirety of OK. Now, this
too can only happen, if each of OK is surrounded fully by other obsta-
cles Oj. If the process continues this way, then the entire floor space
will ultimately be covered by all unvisited obstacles, which however is
a contradiction over the initial premise. So the initial premise is wrong,
and hence the property follows.

Property 2: The procedure Map Building is sound.

Proof: The algorithm never generates a node corresponding to a point in a
free space, as the algorithm visits the boundaries of the obstacles only, but
not any free space. Hence the proof is obvious.

2.2.3 An Illustration of Procedure Traverse Boundary

This example illustrates how a robot moves around an obstacle by utiliz-
ing the procedure Traverse Boundary. Consider the rectangular ob-
stacle and robot (encircled R) on the north side of the obstacle (shown in
Fig. 2.4).

Let the robot’s initial coordinates be x = 75, y = 48 (measured in 2D
screen pixels). The sensor information from the robot’s location in all di-
rections is stored in an array as

N NE E SE S SW W NW

(7 5 ,43) (8 0 ,43) (8 0 ,48) (8 0 ,50) (7 5 ,50) (7 0 ,50) (7 0 ,48) (7 0 ,43)

The shaded portions are obstacle regions. So we choose the location (70,
48) (in the west direction) as the next location to move, since it is an ob-
stacle-free point and it is next to an obstacle region. So the robot will move
to a step ahead in the west direction.

28 2 Map Building

Fig. 2.4. The robot near a rectangular obstacle showing the sensory information in
the eight specified directions

Let us consider the robot at another position (48, 48) shown in Fig. 2.5.
The sensory information of the robot at this new location is given as fol-
lows.

N NE E SE S SW W NW

(48,43)

(53,43)

(53,48)

(50,50)

(48,53)

(43,53)

(43,48)

(43,43)

From the above table, it is clear that the location (48, 53) is in the south di-
rection, which is obstacle-free and it is next to the obstacle location (53,
53). So the next point to move is (48, 53) in the south direction. Likewise
we repeat this process until we reach the initial coordinates (75, 48). The
coordinates of the boundary of the obstacle are stored in a linked list,
which is maintained in a general structure. Now the next task is to build
the total map with the help of this boundary traversing algorithm, which is
illustrated below.

 R

(50,50) (100,50)

(50,100) (100,100)

(75,43)

(80,43)

(80,48)

(80,50) (70,50)

(70,48)

(70,43)

(75,50)

NORTH

E
A
S
T

SOUTH

W
E
S
T

2.2 Constructing a 2D World Map 29

 Fig. 2.5. The robot near a square-type obstacle at another location and the sensor
information in the simulation

2.2.4 An Illustration of Procedure Map Building

An example is given here for creation of a linked list to record the visited
obstacles and their boundaries of an environment shown in Fig. 2.6.

The searching process is started from the north direction of robot. If
any obstacle is found, the robot will move to that obstacle and record
the boundary coordinate information of that obstacle. Again it will start
searching in the north direction from the recently visited obstacle. In
this way it will go as deep as possible in the north direction only. If no
new obstacle is available in the north direction, the robot will look for
other directions, in order, for new obstacles. If any new one is found,
the robot will visit it and move as deep as possible in the newly found
direction. If in any case it cannot find any new obstacle, it will back-
track to its parent obstacle and start looking in other directions, as
shown in Fig. 2.7.

R

(100,50)

(50,100) (100,100)

NORTH

E
A
S
T

SOUTH

W
E
S
T

(48,43)

(53,43)

(53,48)

(50,50) (43,53)

(43,48)

(43,43)

(48,53)

30 2 Map Building

Fig. 2.6. The path traveled by the robot while building the 2D world map using
depth-first traversal. The obstacles are represented with literals and the coordi-
nates of the obstacles and the workspace is shown inside the braces

A

START (35,55)

C

D

(20,30) (35,30)

(35,40)

(25,40)

(40,70)

(40,60)
(25,60)

(25,70)

B

(70,10)

(90,10)

(90,20) (70,20)

(70,70) (90,70)

(85,65) (75,65)

NORTH

E
A
S
T

SOUTH

W
E
S
T

(0,0)

(0,100) (100,100)

(100,0)

2.2 Constructing a 2D World Map 31

Fig. 2.7. The linked list created to record the visited obstacles and their boundary.
Here all the points on the boundary visited by the robot have not been shown in
the linked list in order to maintain clarity

2.2.5 Robot Simulation

The algorithm for map building has been simulated and tested by a C++
program. An artificial workspace has been created with nine obstacles along
with a closed room, which is shown in Fig. 2.8. The workspace dimension is
fixed by four corner points having coordinates (80, 80), (400, 80), (400, 400)
and (80, 400) in a (640, 480) resolution screen. The dimensions of the obsta-
cles, described by their peripheral vertices, are as follows:
Obstacle 1: (140,120), (170,100), (185,120), (175,140)
Obstacle 2: (240,120), (270,140), (225,164), (210, 135)

Pointer to the structure
of the next visited obstacle

35 55

Coordinates of
starting point

Coordinate of the entry
point of the first visited obsta-

cle

3 6 40 60 40 70 25 60 25 70

40 10 100100 100 100

90 10 70 20 90 20 70 10

85 65 70 70 90 70 75 65

35 40 20 30 25 40 35 30

32 2 Map Building

Obstacle 3: (178,160), (280,180), (185,200), (170,180)
Obstacle 4: (245,175), (285,200), (258,204), (230,190)
Obstacle 5: (310,215), (360,240), (330,270), (298,250)
Obstacle 6: (110,245), (130,225), (180,240), (130,280)
Obstacle 7: (230,258), (270,250), (250,280), (220,280)
Obstacle 8: (220,320), (230,300), (250,330), (230,340)
Obstacle 9: (190,330), (210,350), (180,370), (170,350)

The source code is available in Listing 2.1 at the website of the book. The
dimension of the soft mobile object is 10 pixels in diameter. The soft ob-
ject starts at position (100, 380), and moves as per the map building algo-
rithm, which is displayed in Fig. 2.9 and the simulation results are shown
in Fig. 2.10.

Fig. 2.8. A closed room workspace with nine convex obstacles

N

S

80 120 160 200 240 280 320 360 400

80

120

160

200

240

280

320

360

400

2.3 Execution of the Map Building Program 33

2.3 Execution of the Map Building Program

Following are the instructions to be followed for running this program.

Enter the starting X_position of Robot (80-400): 100
(enter)
Enter the starting Y_position of Robot (80-400): 380
(enter)

Fig. 2.9. The workspace along with the robot position

The simulation results given in Fig. 2.10 and the coordinates of the
boundaries visited by the robot are given subsequently.

34 2 Map Building

 (i): Showing starting position of Robot (ii): After visiting First Obstacle.

 (iii): After visiting 2nd Obstacle (iv): After visiting 3rd Obstacle

 (v): After visiting 4th Obstacle (vi): After visiting 5th Obstacle

2.3 Execution of the Map Building Program 35

Fig. 2.10. Experimental results in a closed workspace containing nine convex

(xii): Silhouette of the workspace

(vii): After visiting 6th Obstacle (viii): After visiting 7th Obstacle

(ix): After visiting 8th Obstacle (x): After visiting 9th Obstacle

(xi): After visiting 10th Obstacle

obstacles

36 2 Map Building

Coordinates of the boundaries visited by the robot:

The coordinates of the boundaries of the obstacles and the room traversed
by the soft object (robot) has been recorded in a file c:\coord.dat by
the program. The contents of the file are given below.

(100,398)(104,398)(108,398)(112,398)(116,398)(120,398)(
124,398)(128,398)(132,398)(136,398)(140,398)(144,398)(1
48,398)(152,398)(156,398)(160,398)(164,398)(168,398)(17
2,398)(176,398)(180,398)(184,398)(188,398)(192,398)(196
,398)(200,398)(204,398)(208,398)(212,398)(216,398)(220,
398)(224,398)(228,398)(232,398)(236,398)(240,398)(244,3
98)(248,398)(252,398)(256,398)(260,398)(264,398)(268,39
8)(272,398)(276,398)(280,398)(284,398)(288,398)(292,398
)(296,398)(300,398)(304,398)(308,398)(312,398)(316,398)
(320,398)(324,398)(328,398)(332,398)(336,398)(340,398)(
344,398)(348,398)(352,398)(356,398)(360,398)(364,398)(3
68,398)(372,398)(376,398)(380,398)(384,398)(388,398)(39
2,398)(396,398)(400,398)(400,394)(400,390)(400,386)(400
,382)(400,378)(400,374)(400,370)(400,366)(400,362)(400,
358)(400,354)(400,350)(400,346)(400,342)(400,338)(400,3
34)(400,330)(400,326)(400,322)(400,318)(400,314)(400,31
0)(400,306)(400,302)(400,298)(400,294)(400,290)(400,286
)(400,282)(400,278)(400,274)(400,270)(400,266)(400,262)
(400,258)(400,254)(400,250)(400,246)(400,242)(400,238)(
400,234)(400,230)(400,226)(400,222)(400,218)(400,214)(4
00,210)(400,206)(400,202)(400,198)(400,194)(400,190)(40
0,186)(400,182)(400,178)(400,174)(400,170)(400,166)(400
,162)(400,158)(400,154)(400,150)(400,146)(400,142)(400,
138)(400,134)(400,130)(400,126)(400,122)(400,118)(400,1
14)(400,110)(400,106)(400,102)(400,98)(400,94)(400,90)(
400,86)(400,82)(396,82)(392,82)(388,82)(384,82)(380,82)
(376,82)(372,82)(368,82)(364,82)(360,82)(356,82)(352,82
)(348,82)(344,82)(340,82)(336,82)(332,82)(328,82)(324,8
2)(320,82)(316,82)(312,82)(308,82)(304,82)(300,82)(296,
82)(292,82)(288,82)(284,82)(280,82)(276,82)(272,82)(268
,82)(264,82)(260,82)(256,82)(252,82)(248,82)(244,82)(24
0,82)(236,82)(232,82)(228,82)(224,82)(220,82)(216,82)(2
12,82)(208,82)(204,82)(200,82)(196,82)(192,82)(188,82)(
184,82)(180,82)(176,82)(172,82)(168,82)(164,82)(160,82)
(156,82)(152,82)(148,82)(144,82)(140,82)(136,82)(132,82
)(128,82)(124,82)(120,82)(116,82)(112,82)(108,82)(104,8
2)(100,82)(96,82)(92,82)(88,82)(84,82)(80,82)(80,86)(80
,90)(80,94)(80,98)(80,102)(80,106)(80,110)(80,114)(80,1
18)(80,122)(80,126)(80,130)(80,134)(80,138)(80,142)(80,
146)(80,150)(80,154)(80,158)(80,162)(80,166)(80,170)(80

2.3 Execution of the Map Building Program 37

,174)(80,178)(80,182)(80,186)(80,190)(80,194)(80,198)(8
0,202)(80,206)(80,210)(80,214)(80,218)(80,222)(80,226)(
80,230)(80,234)(80,238)(80,242)(80,246)(80,250)(80,254)
(80,258)(80,262)(80,266)(80,270)(80,274)(80,278)(80,282
)(80,286)(80,290)(80,294)(80,298)(80,302)(80,306)(80,31
0)(80,314)(80,318)(80,322)(80,326)(80,330)(80,334)(80,3
38)(80,342)(80,346)(80,350)(80,354)(80,358)(80,362)(80,
366)(80,370)(80,374)(80,378)(80,382)(80,386)(80,390)(80
,394)(80,398)(84,398)(88,398)(92,398)(96,398)(100,398)
Obstacle Boundary
(168,99)(172,99)(176,103)(180,107)(180,111)(184,115)(18
8,119)(188,123)(184,127)(184,131)(180,135)(180,139)(176
,143)(172,143)(168,139)(164,139)(160,135)(156,131)(152,
131)(148,127)(144,127)(140,123)(136,119)(140,115)(144,1
15)(148,111)(152,107)(156,107)(160,103)(164,99)(168,99)
Obstacle Boundary
(176,161)(180,157)(184,161)(188,165)(192,169)(196,173)(
200,177)(204,181)(200,185)(196,189)(192,193)(192,197)(1
88,201)(184,201)(180,197)(176,193)(172,189)(172,185)(16
8,181)(168,177)(168,173)(172,169)(172,165)(176,161)
Obstacle Boundary
(180,238)(180,242)(176,246)(172,250)(168,254)(164,258)(
160,258)(156,262)(152,266)(148,270)(144,274)(140,274)(1
36,278)(132,282)(128,282)(124,278)(124,274)(120,270)(12
0,266)(116,262)(112,258)(112,254)(108,250)(108,246)(108
,242)(112,238)(116,234)(120,230)(124,226)(128,222)(132,
222)(136,222)(140,226)(144,226)(148,226)(152,230)(156,2
30)(160,230)(164,230)(168,234)(172,234)(176,234)(180,23
8)
Obstacle Boundary
(180,338)(184,334)(188,330)(192,330)(196,334)(200,338)(
204,342)(208,346)(212,350)(208,354)(204,358)(200,362)(1
96,362)(192,366)(188,370)(184,370)(180,374)(176,370)(17
6,366)(172,362)(172,358)(168,354)(168,350)(172,346)(176
,342)(180,338)
Obstacle Boundary
(212,142)(208,138)(208,134)(212,130)(216,130)(220,126)(
224,126)(228,122)(232,122)(236,118)(240,118)(244,118)(2
48,122)(252,126)(256,126)(260,130)(264,134)(268,134)(27
2,138)(272,142)(268,146)(264,146)(260,150)(256,150)(252
,154)(248,154)(244,158)(240,158)(236,162)(232,162)(228,
166)(224,166)(220,162)(220,158)(216,154)(216,150)(212,1
46)(212,142)
Obstacle Boundary
(244,174)(248,174)(252,174)(256,178)(260,182)(264,182)(
268,186)(272,190)(276,190)(280,194)(284,194)(288,198)(2
84,202)(280,206)(276,206)(272,206)(268,206)(264,206)(26

38 2 Map Building

0,206)(256,206)(252,206)(248,202)(244,202)(240,198)(236
,198)(232,194)(228,190)(232,186)(236,182)(240,178)(244,
174)
Obstacle Boundary
(268,248)(272,252)(268,256)(268,260)(264,264)(260,268)(
260,272)(256,276)(252,280)(248,284)(244,284)(240,284)(2
36,284)(232,284)(228,284)(224,284)(220,284)(216,280)(22
0,276)(220,272)(220,268)(224,264)(224,260)(228,256)(232
,256)(236,252)(240,252)(244,252)(248,252)(252,252)(256,
248)(260,248)(264,248)(268,248)
Obstacle Boundary
(232,300)(236,304)(240,308)(240,312)(244,316)(248,320)(
248,324)(252,328)(252,332)(248,336)(244,336)(240,340)(2
36,340)(232,344)(228,340)(224,336)(224,332)(220,328)(22
0,324)(216,320)(220,316)(220,312)(224,308)(224,304)(228
,300)(232,300)
Obstacle Boundary
(297,251)(297,247)(297,243)(297,239)(301,235)(301,231)(
301,227)(305,223)(305,219)(305,215)(309,211)(313,215)(3
17,215)(321,219)(325,219)(329,223)(333,223)(337,227)(34
1,227)(345,231)(349,231)(353,235)(357,235)(361,239)(361
,243)(357,247)(353,251)(349,255)(345,259)(341,263)(337,
267)(333,271)(329,271)(325,271)(321,267)(317,267)(313,2
63)(309,259)(305,259)(301,255)(297,251)

2.4 Summary

The chapter presents a tool for the representation of the 2D environment of
a mobile robot along with a simulation employing a depth-first search
strategy.

3 Path Planning

3.1 Introduction

Path planning of mobile robots means to generate an optimal path from a
starting position to a goal position within its environment. Depending on
its nature, it is classified into offline and online planning. Offline planning
determines the trajectories when the obstacles are stationary and may be
classified again into various types such as obstacle avoidance; path tra-
versal optimization; time traversal optimization. The obstacle avoidance
problems deal with identification of obstacle free trajectories between the
starting point and goal point. The path traversal optimization problem is
concerned with identification of the paths having the shortest distance be-
tween the starting and the goal point. The time traversal optimization prob-
lem deals with searching a path between the starting and the goal point that
requires minimum time for traversal. Another variant which handles path
planning and navigation simultaneously in an environment accommodating
dynamic obstacles is referred to as online navigational planning, which we
will cover in the next chapter. Depending on the type of planning, the ro-
bot’s environment is represented by a tree, graph, partitioned blocks, etc.
Let us discuss the path planning problem, with suitable structures and rep-
resentations.

3.2 Representation of the Robot’s Environment

Let us first discuss the generalized Voronoi diagram (GVD) representation
to find a path from a starting node to a goal node. The GVD describes the
free space for the robot’s movement in its environment. There exist vari-
ous approaches to construct the GVD namely the potential field method
[Rimon, 1992], two-dimensional cellular automata [Tzionas et al., 1997],
and piecewise linear approximation [Takahashi, 1989].

40 3 Path Planning

3.2.1 GVD Using Cellular Automata

The construction process of GVD by cellular automata starts after repre-
senting the workspace as a rectangular grid. First the boundary grid cells of
each obstacle and the inner space boundary of the environment is filled in,
with a numeral say 1 (One). As the distance from the obstacles and the in-
ner boundary increases, the coordinates of the space will be filled in, with
gradually increasing numbers. The process of filling in the workspace by
numerals is thus continued until the entire space is filled in. Next, the cells
numbered with highest numerals are labeled and its neighborhood cells
containing the same numerals or one less than that is labeled. The process
of labeling is continued until each obstacle is surrounded by a closed chain
of labeled numerals. Such closed curves are retained and the rest of the
numerals in the space are deleted. The graph, thus constructed, is called the
GVD. An example is shown in Fig. 3.1, which demonstrates the construc-
tion process of GVD.

Here the workspace is represented by 16 × 16 grid cells, with the obsta-
cles in it. The cell distance from the obstacle as well as the boundary is
calculated and denoted by that number. The collision-free path is traced by
taking the maximum distance cell from the obstacle and the boundary. The
robot will proceed in the shortest distance path, by employing a heuristic

 (a) (b)

Fig. 3.1 (a) Cell distance calculation by cellular automata; (b) Collision free path

3.3 Path Optimization by the Quadtree Approach 41

search technique. If it fails, it will reject that path and start navigating in
the next shortest path, and so on.

3.3 Path Optimization by the Quadtree Approach

3.3.1 Introduction to the Quadtree

Region representation is an important aspect of image processing. In re-
cent years, a considerable amount of interest has been developed in quad-
trees. This is because of their hierarchical nature which causes a compact
representation. It is quite efficient for a number of traditional image
processing operations such as computing parameters, labeling connected
components, finding the genuineness of an image, computing centroids
and set properties.

Conventional path planning algorithms can be divided broadly into
two categories. The first category makes trivial changes to the represen-
tation of the image map before planning a path. Although this method
has a minimum cost of representation, it is rarely used for mobile robot
navigation. One of the examples of this category is the cell decomposi-
tion approach. This approach consists of subdividing an environment
into discrete cells of a predefined shape and size, such as a square, and
then searching an undirected graph based on the adjacency relationships
between the cells. This approach has the advantage of being able to
generate accurate paths, although they are inefficient when environ-
ments contain large areas of obstacle-free regions. Its path planning
cost increases with grid size, rather than with the number of obstacles
present.

The second category makes an elaborate arrangement to convert to a
representation which will be easier to analyze before planning a path. Free
space methods, Voronoi methods, and medial axis transform methods are
some examples. The practical shortcoming of such methods is that the cost
of planning is still high, because of the representation conversion process
involved.

The quadtree approach is a trade-off between these two categories. The
hierarchical nature of the quadtree data structure makes it a popular choice
for other applications because it is adaptive to the clutter of an environ-
ment. As the image map is converted into a smaller number of nodes, the
quadtree gains a lot of computational saving. The following two aspects
are considered for path planning purposes.

42 3 Path Planning

• A Mobile robot ordinarily negotiates any given path only once, which
implies that it is more important to develop a negotiable path quickly
than to develop an “optimal” path, which is usually an expensive affair.

• The Mobile robot should keep a safe distance from obstacles in the en-
vironment.

3.3.2 Definition

The quadtree is a tree, where each node has four child nodes. Any two-
dimensional map can be represented in the form of quadtree by recursive
decomposition [Davis, 1986]. Each node in the tree represents a square
block of the given map. The size of the square block may be different from
node to node. The nodes in the quadtree can be classified into three groups
i.e. free nodes, obstacle nodes and mixed nodes.

• A free node is a node where no obstacles are present in the square re-

gion.
• An obstacle node is a node whose square region is totally filled with

obstacles.
• A mixed node’s square region is partially filled with obstacles.

3.3.3 Generation of the Quadtree

The generation process of the 2D map shown in Fig. 3.2(a) is first divided
into four subsquare regions (four child nodes), namely NW, NE, SW, SE
according to the directions. Here square regions NW, SW are fully occu-
pied with obstacles (gray regions) and are called the “obstacle node”, node
NE does not have any obstacle in it and is called a “free node”. The node
SE is partially filled with the obstacle and is called “mixed node”. The de-
composition is shown in Fig. 3.2(b). Free nodes and obstacle nodes are not
decomposed further and remain as leaf nodes. But the mixed node is sub-
divided into four subquadrants, which form children of that node. The de-
composition procedure is repeated until either of the conditions mentioned
below is satisfied.

1. The node is either a free node or an obstacle node.
2. The size of the square region represented by the child nodes is less than

or equal to the size of the mobile robot.

3.3 Path Optimization by the Quadtree Approach 43

Let us consider the map shown in Fig. 3.3, for the generation of the quad-
tree. The data structure needed for a node is represented as given below in
programming language C syntax.

 Struct node
 { node* pointer_to_child1;
 node* pointer_to_child2;
node* pointer_to_child3;
node* pointer_to_child4;
node* pointer_to_parent_node;
int node_status;
};

(a) (b)

Fig. 3.2 (a) Representation of a simple 2D world map, in which the gray region
represents obstacles; (b) Decomposition of the 2D world map into quadtree nodes.
The type of each node is represented by the small box, with different fill patterns:
gray color for obstacle nodes, white color for free nodes, and hatched boxes for
mixed nodes

NW NE SE SW

SOUTH

NORTH

EAST WEST

44 3 Path Planning

Fig. 3.3. A representative 2D world map of a robot, containing obstacles, denoted
by the shaded regions

Fig. 3.4. The decomposition of the 2D world map

The gray square areas in Fig. 3.3 are regions occupied by obstacles. In
the first stage of decomposition, the map is divided into four square re-
gions of equal size as shown in Fig. 3.4. The root of the quadtree is the
map itself and is denoted by A.

In the above decomposition the child E contains no obstacle and re-
mains as a leaf node. The remaining nodes B, C, and D contain obstacles
and are treated as mixed nodes. The quadtree after first decomposition is
represented as in Fig. 3.5. The small square box under each node repre-
sents the status of the node, where the white box, gray box and the hashed
line box represents a free node, obstacle node and a mixed node, respec-
tively. The obstacle nodes are decomposed further, as shown in Fig. 3.6.

NW child B NE child C

SE child ESW child D

3.3 Path Optimization by the Quadtree Approach 45

Fig. 3.5. The quadtree representation of the decomposition

Fig. 3.6. The second stage decomposition of the 2D world map

NW NE NW NE NW NE

 SW SE SW SE SW SE

 Node B Node C Node D

B

F G H I

C

J L K O N

D

M P Q

NW NE SE SW NW NE SE SW NW NE SE SW

C D E B

A

NW
NE

SE

SW

46 3 Path Planning

Fig. 3.7. Decomposition of the remaining mixed nodes

Fig. 3.8. The Qaudtree representation of the world map given in Fig. 3.3

F G

R S T U V W X Y

 NW NE NW NE

 SW SE SW SE

NW NE SE SW NW NE SE SW

C

A

B

F G H I

SR T V W X YU

J K L M

D

N O P Q

E

3.4 Neighbor-Finding Algorithms for the Quadtree 47

After the second stage of decomposition, it is found that the nodes F
and G are mixed nodes, which are decomposed further is shown in Fig.
3.7. After the third decomposition all nodes are either obstacle nodes or
free nodes. This satisfies the first condition, mentioned earlier and termi-
nates the generation process. The quadtree generated in this process is
shown in Fig. 3.8.

After the generation of a complete quadtree, the robot generates alter-
native paths from one node to another leaf node by neighbor-finding algo-
rithms [Samet, 1982] and then the optimum path is generated using the A*
algorithm.

3.4 Neighbor-Finding Algorithms for the Quadtree

The two-dimensional image map is divided into a number of square blocks
(may be of different sizes) while generating the quadtree. For path plan-
ning we need to move especially between adjacent blocks. Therefore,
some technique is needed to find these adjacent blocks, called “neighbors”
for a given square block. The original algorithm proposed by Hanan Samet
[Samet, 1982], is discussed here in detail. The importance of these meth-
ods lies in their being a cornerstone of many of the quadtree algorithms.
Since they are basically tree traversals with a visit at each node, they do
not use the coordinate information, or the knowledge of the size of the im-
age, which can be understood from the image shown in Fig. 3.9.

The neighbors of node D are regions B, E, F, and C in the north, east,
south, and west directions, respectively. In our approach we do not take the
corner neighborhood such as D and G, because of the possibility of the ab-
sence of a path between corner neighbors.

Fig. 3.9. A simple 2D world map

 B

 A

 C

D E

F G

North

West

South

East

48 3 Path Planning

Fig. 3.10. A simple decomposed 2D world map

In Fig. 3.10, let us assume the robot is in the square region A, and the
goal is to reach the square region D. If we take the corner neighborhood
into account, the regions A and D will become neighbors. But there is no
path to move into the region D from region A, since regions B and C are
occupied with obstacles. This is the reason why the corner neighbors are
neglected. As mentioned earlier, for a mixed node, one can get four imme-
diate children in four directions. These are called NW, NE, SE, and SW,
which are below in Fig. 3.11.

If P is a node, and I is a quadrant, then these fields are referenced as
FATHER (P) and SON (P, I), respectively. One can determine the specific
quadrant in which a node P lies relative to its father by the use of the func-
tion SONTYPE (P), which has the value of I, if

SON (FATHER(P),I) = P.

For instance assume Fig. 3.11 is a node named P, and the child node in the
NW direction is named as Q. Then

FATHER (Q) = P.
SON(P,NW) =Q.
SONTYPE (P) = NW.

A

B

C D

Fig. 3.11. Representation of children used in the algorithm

NW NE

SW SE

North

EastWest

South

3.4 Neighbor-Finding Algorithms for the Quadtree 49

While generating the quadtree the “node status” is stored in every node.
The integer values stored for the node status are

Node status = 0 = WHITE; If node is a free node.
Node status = 1 = BLACK; If node is an obstacle node.
Node status = 2 = GRAY; If node is a mixed node.

The four boundaries of a node’s square region are called N, E, S, and W
for the north, east, south and west directions, respectively. The following
predicates and functions are defined below, which will be used in the sub-
sequent algorithm.

(i) ADJ(B, I) is true if and only if the quadrant I is adjacent to the
boundary B of the node’s block. For instance,

ADJ(W,NW) = TRUE and ADJ(W,NE) = FALSE.

(ii) REFLECT (B,I) yields the SONTYPE value of the block of equal size
that is adjacent to the side B of a block having SONTYPE value I. For in-
stance,

REFLECT(E,NW) = NE and REFLECT(N,SW) = NW.

REFLECT gives the mirror image of the node I in the direction B. For Fig.
3.9, the mirror image of child SW in the N (north) direction is NW and the
mirror image of child SW in the E (east) direction is SE. These relations
are represented in the tables shown in Fig. 3.12.

For the quadtree corresponding to a 2n × 2n array, the root is at level n,
and the node at level i, is at a distance n−i from the root of the tree. In
other words, for a node at level i, we must ascend n−i FATHER links to
reach the root of the tree. The following algorithm explains how to reach
the neighboring node.

50 3 Path Planning

ADJ (S,Q)

REFLECT (S,Q)

 Fig. 3.12. Predicate relations used in the neighbor finding algorithms

Algorithm GTEQUAL_ADJ_NEIGHBOR (P,D)

Locate a neighbor of a node P in the horizontal or vertical direction D. If
such a Node does not exist, then return NULL.

Begin
Value node P;
Value direction D;
Node Q;
If (not NULL(FATHER(P)) and ADJ(D,SONTYPE(P))
Then
/* find common ancestor */
Q← GTEQUAL_ADJ_NEIGHBOR(FATHER(P),D)
Else
Q← FATHER(P);

Quadrant ‘Q’

 NW NE SW SE

 N T T F F

Side ‘S’ E F T F T

 S F F T T

 W T F T F

Quadrant ‘Q’

 NW NE SW SE

 N SW SE NW NE

Side ‘S’ E NE NW SE SW

 S SW SE NW NE

 W NE NW SE SW

3.4 Neighbor-Finding Algorithms for the Quadtree 51

/* follow the reflected path to locate the neighbor */
return (if (not NULL (Q) and node_status(q)=GRAY)
Then
SON(Q,REFLECT (D,SONTYPE(P)))
Else Q
End.

This algorithm will return a neighbor of greater or equal size. This is done
by finding the common ancestor first. Next the path is retraced while mak-
ing the mirror image move about an axis formed by the common boundary
between the blocks associated with the nodes. The common ancestor is
simple to determine. For instance, to find an eastern neighbor, the common
ancestor is the first ancestor node which is reached via its NW or SW son.
The procedure is shown in Fig. 3.13.

In Fig. 3.13, the eastern neighbor of the node A is G. It is located by
ascending the tree until the common ancestor D, is found, from Fig. 3.14.
This requires going through a NE link to B, a NE link to C, and a NW link
to reach D. The node G is now reached by backtracking along the previous
path with appropriate mirror image moves. This requires descending a NE
link to reach E (since NW and NE are horizontal mirror images), a NW
link to reach F and a NW link to reach G.

Fig. 3.13. Finding the neighbor of node A using a mirror image path from a com-
mon ancestor

52 3 Path Planning

 NW NE
 C E SW SE

 NE NW

 B F

NE NW

 A G

Fig. 3.14. Finding the neighbor of node A using a mirror image path from a com-
mon ancestor

After finding the equal-size neighbor, if it has any children, the smaller
neighbors in it can be found by reaching every leaf node of it and, with the
coordinate information available at that leaf node, checking the adjacency.
The greater sized neighbor can be easily found from the given algorithm. It
is the node which has no children, in the backtracking path, even though
backtracking is not complete. After getting all neighbor nodes, the best
neighbor node is selected among them, using an A* algorithm, which is
explained in the next section.

3.5 The A* Algorithm for Selecting the Best Neighbor

From the knowledge of the starting and goal points, with a single traversal
of the quadtree the stating node (S) and goal node (G) can be identified.
Here the task is to find the minimum cost path between the starting node
and goal node. For this purpose the A* algorithm is employed with the
evaluation function f, of a node C which is defined as

 f(c) = g(c) + h(c)

where g(c) represents the cost of the path from S to C, and h(c) represents
the heuristic estimate of the cost of the remaining path from C to G. Since

3.5 The A* Algorithm for Selecting the Best Neighbor 53

 g(c) = g(p) + g'(p,c)

where g (p) is the cost of the path from S to C’s predecessor P on the path
and g' (p, c) is the cost of the path segment between P and C.
 The latter function, g'(p, c), in turn is defined as

 g'(p, c)= D(p, c) + α . d(c)

with D(c) representing the actual distance between nodes P and C, given
as half the sum of the node sizes, and d(c) representing the cost incurred by
including node C on the path. d(c) depends upon the clearance of the node
C from the nearby obstacles. A linear shape for the cost function d can be
chosen defining d(c) as

 d (c) = Omax − O(c)

where O(c) is the distance of the node C from the nearest obstacle given by
the quadtree distance transform and Omax is the maximum such distance for
any node in the quadtree, so that d(c) is always positive. α in the equation
for g'(p, c) is a positive constant which determines how far the resultant
path will avoid obstacles.

The function h(c) is calculated as the Euclidean distance between mid-
points of the regions represented by C and G. Along with this single crite-
rion, two more criteria can be included. They are the number of obstacles
intersecting the straight line path between C and G, and the second is the
total area of the obstacles intersecting the straight line path between C and
G. After calculating the evaluation function for all the neighbors of the
starting node, the lowest cost function is chosen among them and the node
(say X) corresponding to it is selected as the best node to move. The proc-
ess of finding all neighbors and finding the best of them and then moving
to it, is repeated for the node X. This process is repeated until the goal
node is reached. The source code of the program Path Planning using
the quadtree method is available in Listing 3.1 at the website of the book
and the execution has been given in the next section.

the generated cost of a path should depend on both the actual distance trav-
eled and the clearance of the path from the obstacles, g(c) is defined as

54 3 Path Planning

3.6 Execution of the Quadtree-Based Path

This program partitions a given workspace by the quadtree approach and
determines the trajectory of the robot by employing a heuristic search in
the tree. A sample run is given below, after executing the program.

Set starting X-location = 90
Set starting Y-location = 90
Set goal X-location = 330
Set goal Y-location = 330

Current node = (80,80) and (100, 100)

Following are the possible neighboring nodes

100, 80 and 120,100 : Status : Empty node
80, 100 and 100,120 : Status : Empty node

Total number of neighboring nodes =2
Best node selected out of the above nodes: [(80,100) and
(100,120)]

Following are the possible neighboring nodes

80, 80 and 100,100 : Status : Empty node

Planner Program

3.6 Execution of the Quadtree-Based Path Planner Program 55

100, 100 and 120,120 : Status : Occupied node
80, 120 and 120,160 : Status : Empty node

Total number of neighboring nodes =3
Best node selected out of the above nodes: [(80,120) and
(120,160)]

Following are the possible neighboring nodes

120, 120 and 160,160 : Status : Empty node
80, 160 and 120,200 : Status : Empty node
80, 100 and 100,120 : Status : Empty node
100, 100 and 120,120 : Status : Empty node

Total number of neighboring nodes =4
Best node selected out of the above nodes: [(120,120) and
(160,160)]

Following are the possible neighboring nodes

120, 80 and 160,120 : Status : Empty node
160, 120 and 200,160 : Status : Empty node
120, 160 and 160, 200 : Status : Occupied node
80, 120 and 120,160 : Status : Empty node

Total number of neighboring nodes =4
Best node selected out of the above nodes: [(160,120) and
(200,160)]

Following are the possible neighboring nodes

160, 80 and 200,120 : Status : Empty node
160, 160 and 200,200 : Status : Empty node
120, 120 and 160,160 : Status : Empty node
200, 120 and 220,140 : Status : Empty node
200, 140 and 220,160 : Status : Empty node

Total number of neighboring nodes =5
Best node selected out of the above nodes: [(200, 140) and
(220,160)]

Following are the possible neighboring nodes

200, 120 and 220,140 : Status : Empty node
220, 140 and 240,160 : Status : Occupied node
200, 160 and 240,200 : Status : Empty node
160, 120 and 200,160 : Status : Empty node

Total number of neighboring nodes =4
Best node selected out of the above nodes: [(200, 160) and
(240,200)]

56 3 Path Planning

Following are the possible neighboring nodes

240, 160 and 280,200 : Status : Empty node
200, 200 and 240,240 : Status : Occupied node
160, 160 and 200,200 : Status : Empty node
200, 140 and 220,160 : Status : Empty node
220, 140 and 240,160 : Status : Empty node

Total number of neighboring nodes =5
Best node selected out of the above nodes: [(200, 140) and
(220,160)]

Following are the possible neighboring nodes

240, 120 and 280,160 : Status : Empty node
280, 160 and 320,200 : Status : Occupied node
240, 200 and 280,240 : Status : Empty node
200, 160 and 240,200 : Status : Empty node

Total number of neighboring nodes =4
Best node selected out of the above nodes: [(240, 200) and
(280,240)]

Following are the possible neighboring nodes

240, 160 and 280,200 : Status : Empty node
240, 240 and 280,280 : Status : Empty node
200, 200 and 240,240 : Status : Occupied node
280, 200 and 300,220 : Status : Empty node
280, 220 and 300,240 : Status : Empty node

Total number of neighboring nodes =5
Best node selected out of the above nodes: [(240, 240) and
(280,280)]

Following are the possible neighboring nodes

240, 200 and 280,240 : Status : Empty node
280, 240 and 320,280 : Status : Empty node
160, 240 and 240,320 : Status : Empty node
240, 280 and 260,300 : Status : Occupied node
260, 280 and 280,300 : Status : Occupied node

Total number of neighboring nodes =5
Best node selected out of the above nodes: [(280, 240) and
(320,280)]

Following are the possible neighboring nodes

320, 240 and 400,320 : Status : Empty node
240, 240 and 280,280 : Status : Empty node
280, 220 and 300,240 : Status : Empty node

3.6 Execution of the Quadtree-Based Path Planner Program 57

300, 220 and 320,240 : Status : Occupied node
280, 280 and 300,300 : Status : Occupied node
300, 280 and 320,300 : Status : Occupied node

Total number of neighboring nodes =6
Best node selected out of the above nodes: [(320, 240) and
(400,320)]

Following are the possible neighboring nodes

320, 200 and 360,240 : Status : Empty node
360, 220 and 380,240 : Status : Occupied node
380, 220 and 400,240 : Status : Empty node
320, 320 and 340,340 : Status : Empty node
340, 320 and 360,340 : Status : Empty node
360, 320 and 380,340 : Status : Empty node
380, 320 and 400,340 : Status : Empty node
280, 240 and 320,280 : Status : Empty node
300, 280 and 320,300 : Status : Occupied node
300, 300 and 320,320 : Status : Empty node

Total number of neighboring nodes =10
Best node selected out of the above nodes: [(320, 320) and
(340,340)]
Total time taken to search path = 966.1 msec.
Total path traversal = 476.42 units.

58 3 Path Planning

3.7 Summary

In quadtree-based path planning, the time of search is very smaller, as the
number of nodes to be searched is considerably smaller. In fact, the num-
ber of leaf nodes in a quadtree of an image map having polygonal obsta-
cles is approximately 2/3 O(p) where p is the sum of the perimeters of
the obstacles in terms of the lowest resolution units. The A* search will
only have to deal with about O(p) nodes in the case of a quadtree, instead
of n2 grid points in the case of a grid search method. Moreover a hierar-
chy of different levels of description of the space that is available with
quadtrees enables us to search for a path close to the obstacles only when
necessary. Corner clipping, inflexible paths are eliminated by consider-
ing only neighbors in horizontal and vertical directions. But the short-
coming of this method is that even though the generated path is an opti-
mal one, it is with respect to the divided square blocks and not the exact
path that a robot can travel.

4 Navigation Using a Genetic Algorithm

4.1 Introduction

When the map of the robot’s environment is known, it can plan its trajec-
tory before navigation to a predefined goal point from the starting point.
But, many times the robot cannot decide about the entire trajectory before
navigation, because the obstacles change their positions over time. Further,
in a dynamic environment, which includes one or more mobile objects, it
is useless to plan a path before navigation. In this situation, a robot plans a
subpath and thus navigates to that point and the process continues until the
robot reaches the destination. While moving towards the subgoal, if it dis-
covers an obstacle, then it retraces back to the previous point and then re-
plans for an alternative subpath. The process of replanning and navigation
may continue until the robot reaches a given goal point [Patnaik et al.,
1999c]. In this chapter navigational planning will be discussed using evo-
lutionary algorithms [Patnaik et al., 1998].

The evolution program is a probabilistic algorithm, which maintains a
population of individuals, P(i)= { xi

i , …, xn
i } at iteration i. Each individ-

ual represents a potential solution to the problem at hand, and each solu-
tion xi

t is evaluated to give some measure of its “fitness”. Then, a new
population at iteration (i + 1) is formed by selecting the better suited indi-
viduals. Some members of this population undergo transformations by
means of unary transformations mi (mutation), which create new individu-
als by a small change in a single individual (mi: S S), and higher order
transformations like cj (crossover), which create new individuals by com-
bining parts from several (two or more) individuals (cj: S×S S). After
several generations, the program converges to a near optimum solution,
hopefully representing the best individual. The structure of an evolution
program is shown below.

60 4 Navigation Using a Genetic Algorithm

Algorithm Evolution Program
Begin
i 0;
Initialize population Pi;
Evaluate population Pi;
While (not termination-condition) do
For i=1 to n
i i+1;
Select population Pi from previous population Pi-1;
Apply genetic operators i.e. cross over and mutation on
population Pi;
Evaluation of population Pi by the predefined criteria;
End For;
End While
End;

Genetic algorithms have been successfully employed in various classical
problems of AI such as intelligent search, optimization and machine learn-
ing. Let us first discuss genetic algorithms and their formulation in detail.

4.2 Genetic Algorithms

Genetic algorithms are inspired by Darwin’s theory about evolution. They
were invented by John Holland and developed by him and by his col-
leagues during 1975. According to Holland, the solution to a problem is
evolved by genetic algorithms, rather than estimating it. The algorithm is
started with a set of solutions (represented by chromosomes) called a popu-
lation. Solutions from one population are taken and used to form a new
population. This is done with the hope that the new population will be bet-
ter than the old one. Solutions that are selected to form new solutions (off-
spring) are selected based on their fitness, i.e. the more suitable they are
the more chances they have for reproduction. This process is repeated until
some predefined condition is satisfied or the best solution is achieved.
The basic steps of a genetic algorithm are as follows.
Step 1: Generate a random population of n chromosomes out of the given
problem. This is the most important step for the solution.
Step 2: Evaluate the fitness function f(x) of each chromosome x in the
population.
Step 3: Create the new population by repeating the following steps until
the new population is complete:

4.2 Genetic Algorithms 61

(a) Select two parent chromosomes from a population according to their fitness.
The better the fitness, the bigger the chance to be selected. This step is called
Selection.

(b) Crossover the parents to form a new offspring or children, with a crossover
probability. If no crossover was performed, the offspring are an exact copy of
the parents.

(c) Mutate new offspring at each locus or position in the chromosome, with a mu-
tation probability (this step is called mutation) and place these new offspring
in the population.

(d) Use the newly generated population for a further run of the algorithm. This
process is called replacement.

Step 4: If the predefined condition is satisfied then stop and return the best solu-
tion in current population or else Goto Step 2.

This is a generalized algorithm, but there are many variations, which can
be implemented differently for different problems. Next the question is to
create chromosomes, and what kind of encoding one should follow to se-
lect parents for crossover. This can be achieved in many ways, but the al-
gorithm should select the better parents. While selecting the new popula-
tion from the generated offspring, it may sometimes loose the best
chromosome. In order to overcome this at least one best solution must be
copied without changes to a new population, so that the best solution found
at any iteration can survive to the end of the run.

4.2.1 Encoding of a Chromosome

The chromosome should in some way contain information about the solu-
tion which it represents. The most common way of encoding is a binary
string, which can be represented as shown in Table 4.1.

Table 4.1. Encoding of a chromosome

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome has one binary string. Each bit in this string can
represent some characteristic of the solution or the whole string can repre-
sent a number. Of course, there are many other schemes of encoding,
which depend mainly on the problems to be solved. For instance, one can
encode integer or real numbers directly, which is sometimes useful for
some specific problems.

62 4 Navigation Using a Genetic Algorithm

4.2.2 Crossover

Crossover selects genes from parent chromosomes and creates a new off-
spring. The simplest way to do this is to choose randomly some crossover
point and copy everything before this point from first parent and then copy
everything after the crossover point from the second parent. There exist
also many complicated crossover like, multipoint and ring crossover,
which depends on the encoding scheme of the chromosome. The specific
crossover designed for a specific problem may not be suitable for other
problems. A sample cross over operation is shown in Table 4.2.

Table 4.2. Crossover operation (| is the crossover point)

Chromosome 1 01011 | 00100111110

Chromosome 2 11011 | 11000011010

Offspring 1 01011 | 11000011010

Offspring 2 11011 | 00100111110

4.2.3 Mutation

After a crossover is performed, mutation is done, in order to prevent all so-
lutions in the current population falling into a local optimum of the solved
problem. Mutation changes a bit randomly in the new offspring; in other
word it does the fine-tuning. For binary encoding a few randomly chosen
bits may be changed from 1 to 0 or from 0 to 1. Mutation can then be fol-
lowed as shown in Table 4.3. The mutation also depends on the encoding
scheme as well as the crossover.

Table 4.3. Mutation scheme

Original offspring 1 01011 11000011010

Original offspring 2 11011 0 0100111110

Mutated offspring 1 01011 11001011010

Mutated offspring 2 11011 0 0100110110

4.2 Genetic Algorithms 63

4.2.4 Parameters of a GA

There are two basic parameters of a GA, i.e. the crossover probability and
the mutation probability. The crossover probability says how often cross-
over will be performed. If there is no crossover, i.e. 0% probability, the
offspring is an exact copy of the parents. If there is full crossover, or 100%
probability, then all offspring are made by crossover. The objective of the
crossover is that new chromosomes will have good parts of old chromo-
somes and some of the new chromosomes which are better will be
evolved. However, it is good to let some parts of the population survive to
the next generation, which are really better chromosomes. The mutation
probability says how often parts of the chromosome will be mutated. If
there is no mutation, or 0% probability, offspring are taken after crossover
or copied without any change. If the mutation probability is 100%, the
whole chromosome is changed. Mutation is made to prevent the GA fal-
ling into local extremum, but it should not occur very often, otherwise the
GA will behave as random search.

There are also some other parameters of a GA, one of which is popula-
tion size, which specifies how many chromosomes should be in the popu-
lation in one generation. If there are too few chromosomes, the GA have
few possibilities to perform a crossover and only a small part of the search
space is explored. On the other hand, if there are too many chromosomes,
the evolution process slows down.

4.2.5 Selection

Selection is the process by which chromosomes are selected from the
population for the crossover. The main problem is how to select these
chromosomes. According to Darwin’s evolution theory the best ones
should survive and create new offspring. There are many schemes to select
the best chromosomes, for example roulette wheel selection, Boltzman se-
lection, tournament selection, rank selection, steady state selection, and
some others. Some of them are covered here.

Elitism: While creating new population by crossover and mutation,
there is more chance that the best chromosome is lost. Elitism is the name
of a method that first copies the best chromosome or a few best chromo-
somes to the new population. The rest is done by the process of crossover
and mutation. Elitism can very rapidly increase the performance of the
GA, because it prevents losing the best found solution.

64 4 Navigation Using a Genetic Algorithm

4.3 Navigation by a Genetic Algorithm

The current literature on robotics [Lin et al., 1994; Michalewicz, 1986;
Trojanowski, 1997; Xiao, 1997] has established that genetic algorithm are
useful tools for robot navigation. Michalewicz [Xiao, 1997] first success-
fully applied a GA [Goldberg, 1989] in mobile robot navigation. In their
model, Michalewicz considered a set of operators including crossover and
mutations. An operator is selected based on its probability of occurrence
and the operation is executed. The fitness evaluation function is then
measured and proportional selection is employed to get the population in
the next generation. This model is ideal for a static environment, but in
case of a dynamic environment much of the computation time will be
wasted for planning a complete path, which later is likely to be disposed
of. An alternative solution in this situation can be selection of a path seg-
ment from the sensory reading after each genetic evolution. This can be
extremely fast and thus can take care of movable obstacles having speed
less than or equal to that of the robot.

4.3.1 Formulation of Navigation

For the selection of the chromosome or to set up an initial population, the
sensor information is taken into account and the coordinates obtained from
these sensors are used to set up the initial population. This formulation en-
sures that all the initial populations are feasible, in the sense that they are
obstacle-free points and the straight path segments between the starting
point and via points are also obstacle free. Since the path segment to the
next point is evaluated after each genetic evolution, the data structure to
represent the chromosome becomes very simple, as shown in Fig. 4.1.

Here (Xi, Yi) is the starting point and (Xj, Yj) is one of the 2D points, ob-
tained from the sensor information, where chromosomes form the initial
population. Next crossover is done among the initial population. It has
been observed that if the cross-site is chosen randomly, then most of the
offspring generated out of the crossover are not feasible, as those paths

Fig. 4.1. Representation of the chromosome of a single path segment from the sen-
sory readings

Xi Yi

Xj Yj

4.3 Navigation by a Genetic Algorithm 65

Fig. 4.2. The crossover operation used in the proposed algorithm

may either encounter obstacles or fall outside the workspace. Hence inte-
ger crossover is chosen instead of binary crossover. In Fig. 4.2 the cross-
over point is set between the third and the fourth field for each pair of
chromosomes and the new population is generated. For the newly gener-
ated populations the feasibility is estimated, i.e. whether these paths are
obstacle free or not. The next, mutation is performed for fine-tuning the
path to avoid the sharp turns.

The estimation of fitness of each and every chromosome is done subse-
quently, out of the total population (both for the initial and new popula-
tions), which invloves finding the sum of the Euclidean distance from the
starting point to the coordinate obtained from the sensor information and
the distance from that point to the goal point.

Fitness of a chromosome (Xi, Yi, Xjk, Yjk) =

1
__
(distance between (Xi

, Yi) & (Xjk, Yjk)) + (distance between (Xjk, Yjk) & (Xgoal, Ygoal)

∀k, generated after the crossover.

The best-fit chromosome is evaluated, after finding the fitness value of

each chromosome. The best-fit chromosome represents the predicted opti-
mal path segment, towards the goal. A near optimal intermediate point is

Chosen Crossover point Chosen Crossover point

Crossover

Offspring generated

Xi Yi Xj1 Yj1 Xi Yi Xj2 Yj2

Xi Yi Xj1 Yj2 Xi Yi Xj2 Yj1

66 4 Navigation Using a Genetic Algorithm

found after each generation. The third and fourth fields of the best-fit
chromosome become the next intermediate point to move and the starting
point is updated with the best-fit point. The whole process of the GA, from
setting up the initial population, is repeated until the best-fit chromosome
has its third and fourth field equal to the x- and y-coordinates of the goal
location. The algorithm is formally presented below and the detailed code
is given in the next section.

Procedure for Navigational Planning Using Genetic Algorithm
// (xi, yi) = starting point;
 (xg, yg) =goal point; //

 add path-segment to path-list (xi,yi) ;

Repeat
i) Initialization:

Get sensor information in all possible directions
(xj1, yj1), (xj2,yj2),….(xjn,yjn).

 Form chromosomes like (xi,yi,xj,yj);
ii) Crossover:

Select crossover point randomly on the third and
the fourth fields of the chromosome.
Allow crossover between all chromosomes and get
new population. (xi,yi,xj1,yj1),(xi,yi,xj2,yj2),
(xi,yi,xj1i,yj1i),(xi,yi,xj2ii,yj2ii);

iii) Mutation:
Select a mutation point in bitstream randomly and
complement that bit position for every chromosome.

iv) Selection:
Discard all chromosomes (xi,yi,xj,yj) from
population whose line segment is on obstacle
region
For all chromosomes in population find fittness
using Fittness(xi,yi,xj,yj) = 1/ ((xj-xi)2+(yj-yi)2
+(xg-xj)2+(yg-yj)2);
Identify the best fit chromosome (xi,yi,xbf,ybf);
Add to path-list(xbf,ybf);
xi=xbf; yi=ybf;
End for,

 Until (xi=xg)&&(yi=yg);
End.

4.4 Execution of the GA-Based Navigation Program 67

4.4 Execution of the GA-Based Navigation Program

Robot navigation by a genetic algorithm is simulated and tested by the
C++ program. The source code is available in Listing 4.1 at the website of
the book. An artificial workspace has been created with nine obstacles
along with a closed workspace. The workspace dimension is fixed by four
corner points having coordinates (80,80), (400,80), (400,400) and (80,400)
in a (640,480) resolution screen. The dimensions of the obstacles, de-
scribed by their peripheral vertices are as follows:

Obstacle A: (120,130), (180,130), (180,160), (120,160)
Obstacle B: (120,190), (140,220), (120,250), (100,220)
Obstacle C: (200,180), (250,180), (230,220), (180,220)
Obstacle D: (290,160), (320,160), (320,250), (290,250)
Obstacle E: (160,270), (230,270), (210,310), (180,310)
Obstacle F: (250,250), (290,250), (290,270), (250,270)
Obstacle G: (330,220), (360,220), (360,320), (330,320)
Obstacle H: (150,310), (220,380), (150,350)
Obstacle I: (260,330), (330,330), (330,380), (260,380)

The dimension of the soft mobile object is 10 pixels in diameter. Out of
nine obstacles only obstacle F can change its position. The soft object
starts at a position (130,370), and moves to a goal position (300,100) by
the GA-based algorithm as shown in Fig. 4.3.

Fig. 4.3. Workspace with nine obstacles. The point-mass robot navigates from the
starting point to the goal position smoothly

80 120 160 200 240 280 320 360 400
80

120

160

200

240

280

320

360

400

68 4 Navigation Using a Genetic Algorithm

In Fig. 4.4, the obstacle F has changed to a new position [(250,180),
(290,180), (290,200), (250,200)], which blocks the earlier path to the goal.
In this situation, the soft mobile object navigates towards the goal by GA,
after roving around the blocked path.

Fig. 4.4. Obstacle F has moved to a new location blocking the free path to the
goal. The robot navigates in an alternative path using EA

4.5 Replanning by Temporal Associative Memory

In the situation shown in Fig. 4.4, the robot has to replan the path with the
new situation, which can be achieved by memorizing the path by temporal
associative memory which is described here.

4.5.1 Introduction to TAM

Temporal associative memory (TAM) is a specialized neural topology of
bi-directional associated memory (BAM) [Kosko, 1987]. BAM [Kosko,
1988] is realized with a two-layer neural net, where each neuron at one
layer is connected bi-directionally to all the neurons in the other layer.
BAM was proposed for the first time by Kosko of the University of South-
ern California in the late 1980s [Kosko, 1987]. In his elementary model he

80 120 160 200 240 280 320 360 400
80

120

160

200

240

280

320

360

400

4.5 Replanning by Temporal Associative Memory 69

considered a two-layered neural net, where neurons in each layer are con-
nected to the neurons in the other layer through bi-directional links. The
signal associated with the neurons can assume {−1, +1} values and the
weights, describing the connectivity between the neurons possess signed
integer values. The basic problem in BAM was to design a single set of
weight matrix W, such that the difference between the transformed vector
and the output vector is a minimum.

Kosko considered a Lyapunov function, describing a nonlinear surface to
show that there exist a single matrix W, for which the minima of expression
(4.1) can be attained. This also proves that if Bi can be computed by taking the
product of Ai and W, Ai too can be evaluated by multiplying Bi by WT. The ex-
tension of the concept of BAM for memorizing a sequence of causal events is
known as temporal associative memory (TAM) [Kosko, 1988]. For instance,
given a set of weight matrix W, if one knows the causal relationships:

A1→ A2
A2→ A3
…………
…………
An-1→ An

then An can be inferred from A1 through the chain sequence A1→ A2 →
A3→ …………→ An. Now by remembering the weight matrix W and the
input vector A1, one can reconstruct the entire chain leading to An. Now, let
us consider the case where there exists a bifurcation in the chain at the
event Aj. The sequence describing the bifurcation is.

A1→ A2 →......→ Aj→ Aj+1→ ………… → An+1

 → B1→ B2 → B3→ →Bk

Let us assume that the whole sequence from Ai through An and from Aj
through Bn is stored. Now it has been detected that the sequence Aj+1 to An
is invalid. The system under this configuration will backtrack from Aj+1 to
Aj by the operation Aj = Aj+1 .WT and then proceed through an alternative
sequence through Bi by the transformation Bi = Aj.W′. This property of
TAM encourages employing it in replanning of the navigation of the
mobile robot. Thus, it may be inferred that TAM may be useful for

)1.4()AWB()BWA(
i

i
T

i
i

ii ∑∑
∀∀

−+−

70 4 Navigation Using a Genetic Algorithm

re-planning of mobile robot navigation in a dynamic world. Here the robot
has to determine all possible paths between each pair of given locations,
and encode it for subsequent usage. For instance, to traverse the path from
A1 to An, the robot has to memorize only the weight matrix W, based on
which it can easily evaluate the entire trajectory passing through A1 and An.
In fact, we can derive A2, A3,……An by post multiplying A1 by W, W2,
……Wn-1. For determining the backtrack path from known An, we could go
on multiplying by WT. Because of the inherent feature of bi-directionality,
the navigational replanning can be easily formulated with TAM.

4.5.2 Encoding and Decoding Process in a Temporal Memory

Once the possible path segments are generated by the EA navigator, the
robot replanning can be encoded by using TAM. The encoding scheme in
the present context is to evaluate the weight matrix W that satisfies the cri-
terion of minimality of the function.

The decoding process means evaluating Ai+1, when Ai is known or vice-
versa. Let us represent the motion of an autonomous vehicle on a path by a
set of ordered vectors, such as A1→ A2→……Ak→ Ak+1→ ……→An, as-
suming the temporal patterns are finite and discrete. The feature of the bi-
directionality in BAM is being utilized here to memorize the associative
matrix between Ai→ Ai+1. The following steps can be used to encode the
following weight matrix of the TAM.

1. Binary vectors are converted to bipolar vectors
2. The contiguous relationship Ai→ Ai+1 is memorized by forming the cor-

relation matrix Wi = Xi
T. Xi+1

3. All the above correlation matrices are added point-wise to give

∑ ∑
∀ ∀

++ −+−
i i

i
T

1i1ii)2.4()AWA()AWA(

)3.4(XXW 1i

n

i

T
i +⋅= ∑

4.5 Replanning by Temporal Associative Memory 71

Decoding of the output vector Ai+1 is estimated by vector multiplication of
A with W and applying the following threshold function

4.5.3 An Example in a Semi-dynamic Environment

The trajectories traversed by the soft mobile object along two alternative
paths, shown in Fig. 4.5 are represented by the following set of sequences
in decimal numbers and later converted to binary values, where the num-
ber of bits depends on the length and resolution.

A1=(X1,Y1) = (1,1) = (0 0 1 0 0 1); A2= (X2,Y2) = (1,2) = (0 0 1 0 1 0);

A3= (X3,X3) = (1,3) = (0 0 1 0 1 1); A4=(X4,Y4) = (2,4) = (0 1 0 1 0 0);

A5=(X5,Y5) = (3,4) = (0 1 1 1 0 0); A6=(X6,Y6) = (4,4) = (1 0 0 1 0 0);

A7=(X7,Y7) = (5,5) = (1 0 1 1 0 1); A8=(X8,Y8) = (5,6) = (1 0 1 1 1 0);

A9=(X9,Y9)= (6,7) = (1 1 0 1 1 1); A10=(X10,Y10)= (7,7) = (1 1 1 1 1 1)

Encoding the above sequences into bipolar values is necessary according
to the TAM procedure, which is derived below:

A1=(X1,Y1) = (−1 −1 1 −1 −1 1); A2= (X2,Y2) = (−1 −1 1 −1 1 −1);

A3= (X3,X3) = (−1 −1 1 −1 1 1); A4= (X4,Y4) = (−1 1 −1 1 −1 −1);

A5= (X5,Y5) = (−1 1 1 1 −1 −1); A6= (X6,Y6) = (1 −1 −1 1 −1 −1);

A7= (X7,Y7) = (1 −1 1 1 −1 1); A8= (X8,Y8) = (1 −1 1 1 1 −1);

A9= (X9,Y9) = (1 1 −1 1 1 1); A10=(X10,Y10)= (1 1 1 1 1 1)

⎪
⎩

⎪
⎨

⎧

≤

>=

⎪⎩

⎪
⎨
⎧

<

≥
=

+

+

+

0WAif,0

0WAif,1A

0WAif,0

0WAif,1A

T
i1i

T
i1ik

1

ii

iik
1i

72 4 Navigation Using a Genetic Algorithm

(a)

(b)

Fig. 4.5 (a) Sample path between starting position (S) and goal position (G)
though a charted path A1, A2, ……A10; (b) mobile object traverses in an alternate
path after backtracking from node A7 to A4, as the semi-dynamic obstacle F has
shifted its position and then navigates through the charted path from B1 to B4 and
then takes the normal path to reach the goal within the workspace

4.5 Replanning by Temporal Associative Memory 73

The calculation of a sample correlation matrix W1 is shown below.

W1=A1

T. A2 = (-1 -1 1 -1 -1 1)T . (-1 -1 1 -1 1 -1)

The weight matrix W is estimated by adding the contiguous matrices
W1,W2, ……W8.
W = W1+ W2+ W3+ W4+ W5+ W6+W7+W8+W9

 = A1
T. A2 + A2

T. A3 + A3
T. A4 + A4

T. A5 + A5
T. A6+ A6

T. A7 + A7
T. A8 + A8

T.
A9 + A9

T. A10

Each successive step of the movement can be estimated by the expression
Ai.W, which can be easily verified. The second objective of the net is to
backtrack, in the presence of an obstacle on a particular route. For in-
stance, when the robot finds an obstacle after the seventh step of move-
ment on the right-hand path of obstacle C, then it retraces back to node A4,
which is a junction and takes an alternative path by means of an alternative
TAM weight matrix W', which has been estimated by considering the four
nodes which surround the obstacle C, on the top and left side. Here from
the node A4, two alternate weight matrices are available. If the robot finds
an obstacle in one of the paths, it will backtrack and proceed again from
the node A4 on the other path. The weight W' can be estimated as follows
by considering the node points:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3- 3 1- 1 1 1-
5 3 1- 3- 5 1

1 1- 7 1 1 7
3- 3 1- 3- 3- 1-

1- 3- 1 1- 3 1
5 3 3 1 1 7

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−
−−

−−−−
−−
−−

=

111111
111111
111111
111111

111111
111111

74 4 Navigation Using a Genetic Algorithm

A4 = (2,4) = (0 1 1 1 0 0); B1 = (2,5) = (0 1 0 1 0 1);

 B2 = (3,6) = (0 1 1 1 1 0); B3 = (4,7) = (1 0 0 1 1 1);

 B4 = (5,7) = (1 0 1 1 1 1); A9 =(6,7) = (1 1 0 1 1 1);

 A10 =(7,7) = (1 1 1 1 1 1)

Encoding the above sequences into bipolar values gives the following:

A4= (-1 1 1 1 -1 -1); B1 = (-1 1 -1 1 -1 1);

B2= (-1 1 1 1 1 -1); B3= (1 -1 -1 1 1 1);

B4= (1 -1 1 1 1 1); A9 = (1 1 -1 1 1 1);

A10= (1 1 1 1 1 1)

W' = A4
T. B1 + B1

T. B2 + B2
T. B3 + B3

T. B4 + B4
T. A9 + A9

T. A10

 4.5.4 Implications of Results

The previous simulation shown in Figs. 4.3 and 4.4 was repeated after
memorizing path segments with the help of TAM. Fig. 4.6 shows that the
robot is momentarily blocked by the obstacle F, and then finds a path by util-
izing the TAM matrix for different path segments. The final route is shown
in Fig. 4.7. While training the W matrix for different path segments, only
eight successive node points are considered for a better approximation.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0 4 2 4 2 2
4 4 2 0 2- 6
4 4 6 0 2 2
2 2- 0 6- 0 0

0 0 2 0 2 2-
2 2 0 2 0 4

4.6 Summary 75

Fig. 4.6. Robot is blocked momentarily by obstacle F

Fig. 4.7. Robot finds an alternate path by the TAM matrix to reach the goal

4.6 Summary

The chapter covers the interesting issue of replanning and navigation of a
mobile robot, in the case of an environment filled with semi-dynamic
obstacles. The robot first explores the environment by using a genetic

76 4 Navigation Using a Genetic Algorithm

reach a goal position from a starting position by remembering a simple
matrix using temporal associative memory (TAM). The possible path seg-
ments between two predefined positions are memorized through few node
points using TAM, for subsequent traversal.

The most significant application of TAM-based replanning is in auto-
matic guided vehicles for the handicapped people. Given a set of nodes n1,
n2, …….nn, one can employ TAM to determine a path emanating from one
node to another fixed node. This technique also has potential applications
in (i) handling cargo in an air terminal, and (ii) medicine distribution to pa-
tients in an indoor hospital.

algorithm-based navigation and then determines the possible trajectories to

5 Robot Programming Packages

5.1 Introduction

Essentially a robot is an assembly of mechanical actuators and sensors
which are driven by their respective control circuitry, for example, the
driving circuitry of a servo motor, the amplifier circuits of a sonar device,
the electronic receptors of a camera, etc. Ultimately an entire program
drives this hardware. As a programmer, however, one would not be as in-
terested in wasting time and energy in dealing with the intricacies of the
low-level functioning of the robot, as one should be in trying to manipulate
the behavior of the robot at a higher level, guided by the task. Experimen-
tal robots usually have microcontroller driven hardware circuitry and the
microcontroller takes care of the low-level device control. Besides that, it
needs to act as the interface between the robot actuators and sensors and
the user programs. The operating system of the robot serves this purpose,
by interpreting the programs running on the microcomputer of the robot
and mapping them into a sequence of instructions for the microcontroller.
Similarly the feedback by the microcontroller is transferred to the user
programs.

Here the programmer again faces the problem of knowing and repeat-
edly using code or commands for interacting with the operating system of
the microcontroller. To make the task simpler for the programmer, the ba-
sic functionality is wrapped into classes or functions and is made available
to the programmer in the form of new programming languages or libraries
for existing languages such as C++ or JAVA. Some examples are cited
here such as the ARIA library (for C++), the Saphira and Colbert pro-
gramming environments to handle motor and sensor functions, the SVS li-
brary (for C and C++) to handle camera functions, the BotSpeak library
(for C) for speech recognition and synthesis. As C++ is a popular and
powerful OOP language, the programs discussed in this book have been
tested in C++. The ARIA library for C++ has been used to implement
modules to control the movement of the robot as well as its gripper. The

78 5 Robot Programming Packages

SVS classes have been used to interface the camera, and the BotSpeak li-
brary functions have been used to synthesize voice feedback from the ro-
bot. This chapter discusses the tools required for robot programming. This
should facilitate better understanding of the codes that are presented in the
subsequent chapters.

5.2 Robot Hardware and Software Resources

The Pioneer 2-DX ActivMedia mobile robot shown in Fig. 5.1, contains
basic components for sensing and navigation in a real-world environ-
ment. It also includes battery power, drive motors and wheels, position–
speed encoders, integrated sensors and accessories like a gripper and ste-
reo camera. The robot is controlled by an onboard microcontroller and
robot server software [Saphira, 1999]. Pioneer 2-DX also contains an ad-
dressable I/O bus for 16 devices, two RS-232 serial ports, eight digital
I/O ports, and five A/D ports, which are accessible through a common
application interface to the robot server software, Pioneer 2 Operating
System (P2OS). The weight of Pioneer 2-DX is 9 kg and it can carry ex-
tra payload of up to 23 kg.

Fig. 5.1. Pioneer 2-DX from ActivMedia Robotic LLC, USA

5.3 ARIA 79

5.2.1 Components

The main components of Pioneer 2-DX include deck(s) and console, body,
nose, and accessory panels and an array of eight sonar sensors in the front
and eight in the rear that provide object detection and navigation. The ro-
bot has reversible-DC motors equipped with a high-resolution optical
quadrature shaft encoder for position and speed sensing and dead reckon-
ing. The major component of the Pioneer 2-DX microcontroller is a 20
MHz Siemens 88C166 microprocessor with integrated 32K Flash-ROM
and dynamic RAM of 32K. Information about the robot’s state and con-
nections appears on a 32-character (two lines) liquid-crystal display (LCD)
on the console. The display shows the state of communication with the cli-
ent computer along with the battery voltage. The RESET and MOTORS
push-button switches on the console affect the microcontroller’s logic and
motor-driver systems. The serial communication between microcontroller
and client can be established through the RS-232 port.

The Pioneer 2-DX is mounted with an onboard PC, hard-disk drive, on-
board 10/100 Base-T Ethernet for network access along with 10-BaseT
Ethernet cable to a 10/100 Mbps hub for network access. The operating
system of Pioneer’s onboard PC is LINUX 7.1, which includes networking
features that support remote monitoring and control of the robot’s onboard
systems. Ethernet access is done by the Carrier Sense Multiple Access/
Collision Detection (CSMA/CD) technique and is established using
BreezeNET PRO.11 Series.

The Small Vision System (SVS) is a built-in package for vision process-
ing, which consists of several library functions for image capture and ste-
reo correlation. A video-capture board or boards in the PC digitizes the
video streams into main memory. The SVS library package computes the
disparity image, which can be displayed or processed further. It also in-
cludes a program namely smallv, which is used for standalone vision
processing applications.

5.3 ARIA

ARIA stands for ActivMedia Robotics Interface for Application, and was
designed for use with ActivMedia Robotics mobile robots. The ARIA pro-
gramming library is for C++ object-oriented programmers who want to
have close control of the robot. ARIA is also useful for preparing robot-
control software and deploying it on ActivMedia Robotics mobile robot
platforms.

80 5 Robot Programming Packages

SRI International’s Saphira [Konolige, 1995] has been built upon ARIA
and is useful for creating applications with built-in advanced robotics ca-
pabilities, including gradient navigation and localization, as well as GUI
controls with visual display of robot platform states and sensor readings.
ARIA will be discussed in detail as it gives greater control for building
programs to achieve desired results. The following sections cover the fun-
damental usage of ARIA for programming the mobile robot illustrated by a
simple program whenever required. In detail the features of the package
can be obtained from the ARIA product manual.

5.3.1 ARIA Client–Server

The mobile server is embodied in the Pioneer 2-DX operating system
software and is found embedded on the robot’s microcontroller, which
manages the low-level tasks of robot control and operation, including mo-
tion, heading, as well as acquiring sensor information such as sonar, com-
pass and driving accessories like the Pioneer gripper. The robot server
does not perform robotic tasks, rather it is executed by the client. ARIA
works mainly on the client side, which establishes and manages client–
server communications between the ARIA-based software client and the
robot’s onboard servers. ArRobot is the heart of ARIA that acts as a cli-
ent–server communication gateway and is responsible for the collection of
state-reflection information such as position (x, y), velocity (translation and
rotation) and heading/direction. It handles the client–server communica-
tion between applications software and the robot or the simulator as per the
packet-based protocols. This functionality is provided by ArDevice-
Connection, which is the base class to ArSerialConnection and
ArTcpConnection, which are its built-in classes commonly used to
manage communication between application software and the Pioneer 2-
DX robot or SRIsim robot simulator respectively. ArSerialConnec-
tion opens a serial port and establishes a connection with the actual ro-
bot. ArTcpConnection connects to the robot or robot simulator
through the network. In the case of the robot simulator SRIsim, the
simulator listens on the 8101 port of the machine on which it is running.
The ArTcpConnection class can be used to connect to the actual ro-
bot. To activate this before launching the client program, start ipthru on
the robot (via telnet). This program acts as a bridge between the network
and the serial port of the onboard computer of the robot.

5.3 ARIA 81

After associating the device with the robot, it is required to establish the
client–server connection between ARIA’s ArRobot and the Pioneer 2-
DX microcontroller or SRIsim simulator. The blockingConnect()
method doesn’t return from the call, until a connection succeeds or fails.
ArRangeDevice are range device abstractions of the robot, for which
there are relevant readings. ArSonarDevice has been used for han-
dling sonar readings, which collect 2D data periodically at specific global
coordinates. A RangeDevice is attached to the robot with

void ArRobot::addRangeDevice (ArRangeDevice
*device);

Sonar sensors are integrated with the robot controller and their readings
are automatically included with the standard Server Information Packet
(SIP) and are handled by the standard ArRobot packet handler. None-
theless, it must be explicitly added to the sonar RangeDevice with the
robot object to use the sonar readings for control tasks. Each RangeDe-
vice has two sets of buffers (ArRangeBuffer): current and cumula-
tive, and each supports two different reading formats: box and polar. The
current buffer contains the most recent reading and the cumulative buffer
contains several readings over time.

The ARIA client drives the robot and runs its various accessories
through direct and motion commands, as well as through Actions. At the
very lowest level, one may send commands directly to the robot server
through ArRobot. Direct commands consist of a 1-byte command num-
ber followed by none or more arguments as defined by the robot’s operat-
ing system. Motion commands are explicit movement commands and con-
trol the mobility of the robot, either to set an individual wheel or to
coordinate translational and rotational velocities or to change the robot’s
absolute or relative heading or move a prescribed distance or just stop. The
list of command functions of the robot used for motion commands is given
in Table 5.1.

82 5 Robot Programming Packages

Table 5.1: List of command functions

Instead of using Direct or Motion commands, the ARIA client software
uses ArAction to drive the robot. ARIA includes a number of built-in ac-
tions. Actions are added to robots with

ArRobot::addAction (ArAction *action, int prior-
ity),

including a priority which determines its position in the action list. Custom
actions can be created by deriving from an abstract class namely,

ArAction. ArActionDesired * ArAc-
tion::fire(ArActionDesired currentDesired)

is the only function that needs to be overloaded for an action to work. Ac-
tions are evaluated by the resolving descending order of priority (lowest
priority goes first) in each ArRobot syncTask cycle just prior to State
Reflection. The resolver goes through the actions to find a single end Ac-
tionDesired (ArActionDesired ()), which defines the exact
action to be performed. At the lowest level the robot’s microcontroller
manages the tasks of robot control and operation, which include move-
ment of the mobile actuator and end-effectors such as motors and gripper,
as well as acquiring sensor information such as sonar or IR beams. The

Commands Name of Function

mobility control void ArRobot::setVel2(double leftVel,
double rightVel);
void ArRobot::setVel(double velocity);
//in mm/sec
void ArRobot::setRotVel(double veloc-
ity); //in degrees/sec

absolute and rela-
tive heading con-
trol

Void ArRobot::setHeading(double head-
ing) //in degrees
ArRobot::setDeltaHeading(double delta)

distance move Void ArRobot::move(double distance);

Stop control void ArRobot::stop();
check for comple-
tion of the motion
command

bool isMoveDone(double delta=0.0);
bool isHeadingDone(double delta=0.0);

5.3 ARIA 83

program running on the microcontroller i.e. the operating system of the
microcontroller, thus performs the task of mobile servers. The Pioneer
2DE operating system is one such OS that is embedded in the microcon-
troller of ActivMedia Robotics mobile robots. But the robot servers do not
perform robotic tasks. They only perform elementary operations at the
lowest level. To implement robotics control strategies and tasks, such as
obstacle avoidance and detection, sensor fusion, feature recognition, map-
building, intelligent navigation, etc., intelligent programs have to be run on
a connected PC which interact with the servers. These client programs run
the desired robotic tasks. An experiment has been conducted in the Labo-
ratory with the following IP Address:

Server : 192. 168. 0. 1

Robot : 192. 168. 0. 9

The network setting for the client–server architecture of the robot is as fol-
lows, which will be used in the rest of the programs discussed in the sub-
sequent chapters.

Hostname : p2.local.net

IP : 192.168.0.9

Netmask : 255.255.255.0

Default Gateway : 192.168.0.1

Primary DNS : 192.168.0.1

The following commands are used to establish a connection between client
and robot server.

$ xhost +192.168.0.9 (192.168.0.9 being added to
the control list)
$ telnet 192.168.0.9
Red Hat LINUX release 7.1 (Seawolf)
Kernel 2.4.2-2.VSBC6 on an i586
login: guest
Last login: Sun Apr 21 15:45:54 from 192.168.0.3
[guest@p2 guest]$ export DISPLAY=192.168.0.5:0.0
[guest@p2 guest] saphira

84 5 Robot Programming Packages

5.3.2 Robot Communication

The first task of any robotic application is to establish and manage client–
server communication between the software client developed in ARIA and
the onboard robot servers and devices. ARIA provides inbuilt support for
this connectivity through its class ArDeviceConnection.

5.3.3 Opening the Connection

The code fragment given below shows how to establish connection to the
simulator and the robot.

// serial connection (robot)
ArSerialConnection serConn;
// tcp connection (sim)
ArTcpConnection tcpConn;
// robot
ArRobot robot
Aria::init();
tcpConn.setPort("localhost",8101);
// tcpConn.setPort("192.168.0.9",8101);
// see if we can get to the simulator(true is suc-
cess)
if (tcpConn.openSimple())
{
printf("Connecting to simulator through tcp.\n");
robot.setDeviceConnection(&tcpConn);
}
else
{
serConn.setPort();//default "/dev/ttyS0" or "COM1"
serial port
printf("Could not connect to simulator, connecting
to robot through serial.\n");
robot.setDeviceConnection(&serConn);
}

The Aria::init() function initializes the ARIA system and is a must
before any features of ARIA are used in the program. The program should
call Aria::shutdown() to un-initialize or close the ARIA system.
The instance ‘robot’ of ArRobot is the program’s abstraction of the

5.3 ARIA 85

physical robot and is the most important instance in any program using
which all robotic tasks shall be carried out. The instances of ArSerial-
Connection and ArTcpConnection (in this case, serConn and
tcpConn, respectively) are used to establish a connection. The above or-
der ensures that the programs first try to connect to the simulator and if the
simulator is unavailable it tries to connect to the robot server. The set-
Port() function sets the port_id through which the communication is
to take place. If such a communication port is successfully opened then a
client–server connection is established between the program (i.e. the in-
stance of ArRobot) and the onboard robot server, using the setDe-
viceConnection() function of the ArRobot class. In order to ensure
that a non-blocking connection has been established the following lines of
code are used.

if (!robot.blockingConnect())
{printf("Could not connect to robot... Exiting.");
Aria::shutdown();
return(1);
}

The blockingConnect() method doesn’t return from the call until a
connection succeeds or fails.

5.3.4 ArRobot

ArRobot as has been stated earlier, is an abstraction of the real robot, i.e.
it is the program version of the physical robot. Any function called on the
instance of the ArRobot class applies to the robot’s servers. That means
once the robot connection is established, instructions given to the ArRobot
instance are reflected in the robot and the feedback or state of the robot is
reflected as data in certain functions of the ArRobot class. It is for this
reason that ArRobot is called the heart of ARIA because it acts as the cli-
ent–server communications gateway and the central point for collection of
state-reflection information such as position (x, y), velocity (translation and
rotation), and heading/direction.

Furthermore, ArRobot also performs the important task of managing
the program clockcycles and control of multithreading. ArRobot locks
the clock cycle with the robot information packet cycle and performs syn-

86 5 Robot Programming Packages

chronous tasks such as the Server Information Packet (SIP) handler, sensor
interpreters, action handlers, state reflectors, user tasks and many more.

The state reflector functions are listed below. These enable the program
to obtain the instantaneous state of the robot in terms of its position, veloc-
ity, heading, etc.

Std::string getRobotName (void) Returns the robot’s name.
Std::string

getRobotType (void) Returns the type of the robot
connected to.

Std::string getRobotSubType (void) Returns the subtype of the ro-
bot connected to.

double getMaxTransVel (void) Gets the robot’s maximum
translational velocity.

double getMaxRotVel (void) Gets the robot’s maximum ro-
tational velocity.

bool setMaxRotVel (double my-
MaxVel)

Sets the robot’s maximum ro-
tational velocity.

ArPose getPose (void) Gets the global position of the
robot.

double getX (void) Gets the global X location of
the robot.

double getY (void) Gets the global Y location of
the robot.

double getTh (void) Gets the global Th location of
the robot.

double getVel (void) Gets the translational velocity
of the robot.

double getRotVel (void) Gets the rotational velocity of
the robot.

double getRobotRadius(void) Gets the robot radius (in mm).
double getRobotDiagonal (void) Gets the robot diagonal (half-

height to diagonal of octagon)
(in mm).

double getBatteryVoltage(void) Gets the battery voltage of the
robot.

double getLeftVel (void) Gets the velocity of the left
wheel.

double getRightVel (void) Gets the velocity of the right
wheel.

Int getStallValue (void) Gets the 2 bytes of stall return
from the robot.

5.3 ARIA 87

5.3.5 Range Devices

Range devices (ArRangeDevice) are abstractions of the real robot
sensors for which there are relevant readings. ArRangeDevice can
represent any sensor that periodically collects 2D range data at specific
global coordinates. Here we have used only ARIA RangeSensor:
sonar. The sonar sensors are abstracted by class ArSonarDevice
which is a child of the ArRangeDevice. Once a range device is in-
stantiated using the desired parameters, it must be attached to the Ar-
Robot instance of the program using the range device. This is done us-
ing the following function:

void ArRobot::addRangeDevice(ArRangeDevice
*device);

It is to be noted that sonar are integrated with the robot controller and that
their readings automatically come included with the standard Server In-
formation Packet (SIP) and so are handled by the standard ArRobot
packet handler. Nonetheless, we must explicitly add the sonar RangeDe-
vice with the robot object so that we can use the sonar readings for con-
trol tasks. Each RangeDevice has two sets of buffers (ArRange-
Buffer): current and cumulative, and each support two different reading
formats: box and polar

The function prototypes for both types of buffers for both the formats
are as shown:

double ArRangeDevice::currentReadingPolar (double startAngle,
double endAngle, double *angle=NULL)

double ArRangeDevice::currentReadingBox (double x1, double
y1, double x2, double y2, ArPose *readingPos=NULL)

double ArRangeDevice::cumulativeReadingPolar (double startAn-
gle, double endAngle, double *angle=NULL)

double ArRangeDevice::cumulativeReadingBox (double x1, double
y1, double x2, double y2, ArPose *readingPos=NULL)

In polar functions the return value is the nearest range within the sector
formed between the startAngle and endAngle in the counterclock-
wise direction. In Box functions the return value is the nearest range in
the rectangular box formed by the coordinates x1,y1 and x2,y2. The
parameter angle is a pointer to a double value which gives the angle to the

88 5 Robot Programming Packages

shortest range that the function returns. The current buffer contains the
most recent reading; the cumulative buffer contains several readings over
time. As stated earlier, the sonar readings are included in the SIP and can
therefore be obtained using ArRobot. The function prototypes are as
follows:

int ArRobot::getSonarRange(int num)

ArSensorReading * ArRobot::getSonarReading(int num)

The former returns the closest range returned by the sonar numbered by
the parameter num while the latter returns a pointer to a ArSen-
sorReading object for the sonar numbered num.

5.3.6 Commands and Actions

The ARIA client drives the robot and runs its various accessories through
Direct and Motion commands, as well as through Actions.

Direct commands: At the very lowest level, one may send commands di-
rectly to the robot server through ArRobot. These commands are de-
fined by the robot’s operating system and consist of a 1-byte command
number followed by none or more arguments. Direct commands to the ro-
bot come in five flavors, each defined by its command argument type and
length:

ArRobot::com (unsigned char command)
Sends the command number without any arguments.

ArRobot::comInt (unsigned char command, short int arg)
Sends the command number with one byte argument

ArRobot::com2Bytes (unsigned char command, char high,
char low) Sends the command number with two bytes as
arguments.

ArRobot::comStr(unsigned char command, std::string arg)
Sends the command number with a string as argument.

5.3 ARIA 89

The instruction

ArRobot::comStrN (unsigned char command, const char
*str, int size)

sends the command number with a character array and its size as argu-
ments. For details refer to the ARIA User Manual.

Motion commands: These are explicit movement commands and act to
immediately control the mobility of the robot. These are listed below,
along with their purposes. To set an individual wheel, or coordinated trans-
lational and rotational velocities:

void ArRobot::setVel2(double leftVel, double rightVel);
void ArRobot::setVel(double velocity); //in mm/sec
void ArRobot::setRotVel(double velocity); //in de-
grees/sec

To change the robot’s absolute or relative heading:

void ArRobot::setHeading(double heading) //absolute
heading in degrees
ArRobot::setDeltaHeading(double delta)

To move a prescribed distance:

void ArRobot::move(double distance);

To stop the robot:

void ArRobot::stop();

The following functions check whether the previous motion command has
been completed:

bool isMoveDone(double delta=0.0);
bool isHeadingDone(double delta=0.0);

A Direct or a Motion command is executed asynchronously, i.e. in the pro-
grams own thread and therefore has no coordination with the robot clock
cycle. As a result, calls to Direct or Motion commands may conflict with
controls from Actions or other upper-level processes and lead to unex-

90 5 Robot Programming Packages

pected consequences. For this purpose Direct motion commands are exe-
cuted prior to Actions by giving them a precedence time using the function
void ArRobot::setDirectMotionPrecedenceTime (unsigned
int time)

If the time is set to 0 then a call to the function void ArRo-
bot::clearDirectMotion() should be used to cancel the overriding
effect of a Motion command so that Actions are able to regain control over
the robot.

Actions: Actions are synchronously running threads which control the mo-
bility of the robot and its accessories. As they run synchronously with the
robots clock cycle, they can run in coordination with the instantaneous
SIPs which contain essential parameters which can be used to modulate the
movement of the robot. Actions are therefore useful to impart behavior to
the robot which characterizes a number of robotic tasks

Hence, instesd of using Direct or Motion commands, it is preferable that
the ARIA client software uses Actions to drive the robot. ARIA provides
some predefined builtin Actions, all of which derive from the base class
ArAction. These include ArActionAvoidFront, ArAc-
tionAvoidSide, ArActionBumpers, ArActionConstantVe-
locity, ArActionStallRecover, ArActionGoto, and many oth-
ers. One may create an Action with desired properties by inheriting a class
from the base class ArAction. ArAction defines a member function
fire() which entirely specifies the nature of the Action.

ArActionDesired * ArAction::fire(ArActionDesired cur-
rentDesired)=0

This function needs to be overridden for an action. In specifying what the
Action needs to do, the fire() function creates an instance of ArAc-
tionDesired. Actions are added to the robot’s list of synchronous tasks
by the following function:

ArRobot::addAction (ArAction *action, int prority)

The priority parameter enables ArResolver to resolve between two
competing Actions and accordingly allot CPU time. The function ArAc-
tion::setRobot (ArRobot *robot) is called on an Action when
it is added to a robot. Actions are evaluated on descending order of priority
i.e. lowest priority goes first in each ArRobot syncTask cycle just
prior to State Reflection. The resolver goes through the actions to find a

5.3 ARIA 91

single end actionDesired (ArActionDesired ()). A number of
competing actions determine the final motion commands that will be trans-
mitted to the robot server. The ARIA library uses the fuzzy values of the
competing actions to compute the final fuzzy value which is then defuzzi-
fied and sent to the robot’s server where the final motion takes place.

The following program is a simple example of user-defined Action pro-
gramming.

Source listing of sonar.cpp
// sonar.cpp
#include "Aria.h"
class ActionSonar : public ArAction
{
public:
// constructor, sets myMaxSpeed and myStopDistance
ActionSonar();
// destructor, which is just empty, nothing to be done
here
virtual ~ActionSonar(void) {};
// fire is what the resolver calls to figure out what
this action wants
virtual ArActionDesired *fire(ArActionDesired current-
Desired);
// sets the robot pointer, also gets the sonar device
virtual void setRobot(ArRobot *robot);
protected:
// this is to hold the sonar device form the robot
ArRangeDevice *mySonar;
// what the action wants to do
ArActionDesired myDesired;
};
ActionSonar::ActionSonar() :
ArAction("Sonar")
{
mySonar = NULL;
}

/*
Sets the myRobot pointer (all setRobot overloaded func-
tions must do this), finds the sonar device from the
robot, and if the sonar isn't there, then it deacti-
vates itself.
*/
void ActionSonar::setRobot(ArRobot *robot)

92 5 Robot Programming Packages

myRobot = robot;
mySonar = myRobot->findRangeDevice("sonar");
if (mySonar == NULL)
deactivate();
}
//This fire is the whole point of the action.

ArActionDesired *ActionSonar::fire(ArActionDesired cur-
rentDesired)
{
double range;
double angle;
int num;
// reset the actionDesired (must be done)
myDesired.reset();
myDesired.setVel(0.0);
// if the sonar is null, nothing can be done and there-
fore deactivate
if (mySonar == NULL)
{
deactivate();
return NULL;
}
// get the range off the sonar
num=myRobot->getNumSonar();

range = mySonar->currentReadingPolar(-60, 60,&angle)
- myRobot->getRobotRadius();

// if the range is greater than the stop distance, find
some speed to go
// return a pointer to the actionDesired, so that re-
solver knows what to do

if (range>0)
{
printf("Range = %.2f and angle = %.2f ",range,angle);
}
if ((angle>=0.0)&&(angle<20.0)) printf("Left 1");
else if ((angle>=20.0)&&(angle<40.0)) printf("Left 2");
else if ((angle>=40.0)&&(angle<60.0)) printf("Left 3");
else if ((angle>=-20.0)&&(angle<0.0)) printf("Right
1");
else if ((angle>=-40.0)&&(angle<-20.0)) printf("Right
2");
else if ((angle>=-60.0)&&(angle<-40.0)) printf("Right
3");

{

5.3 ARIA 93

ArSensorReading* r=myRobot->getSonarReading(0);
printf("(%.2f,%.2f)%.2f.\n",r->getX(),r->getY(),r-
>getSensorTh());

return &myDesired;
}

int main(void)
{
// The connection is used to talk to the robot
ArSerialConnection con;
// the robot is defined
ArRobot robot;
// the sonar device is defined
ArSonarDevice sonar;

// some stuff for return values
int ret;
std::string str;

// the behaviors from above, and a stallRecover behav-
ior that uses defaults
ActionSonar asonar;

// this needs to be done
Aria::init();

 // open the connection using the defaults, if it
fails, exit
if ((ret = con.open()) != 0)
{
str = con.getOpenMessage(ret);
printf("Open failed: %s\n", str.c_str());
Aria::shutdown();
return 1;
}

// add the range device to the robot,
//you should add all the range devices before you add
actions
robot.addRangeDevice(&sonar);
// set the robot to use the given connection
robot.setDeviceConnection(&con);

// do a blocking connect, if it fails exit
if (!robot.blockingConnect())

94 5 Robot Programming Packages

{
printf("Could not connect to robot... exiting\n");
Aria::shutdown();
return 1;
 }
// enable the motors, disable amigobot sounds
robot.comInt(ArCommands::ENABLE, 0);
robot.comInt(ArCommands::SOUNDTOG, 0);

// add actions in order, the integer is used here for
the priority, with higher priority actions going first

robot.addAction(&asonar, 50);

// runs the robot, the true is used to exit, if it
loses connection
robot.run(true);

// used to shutdown and go away
Aria::shutdown();
return 0;
}

Compile and link
gcc –c –I$ARIA/include sonar.cpp
gcc –o sonar –L$ARIA/lib –lAria –ldl –pthread sonar.o

Saphira: Saphira is a mobile robotics-client development environment,
which is a product of SRI International’s Artificial Intelligence Center
[Konolige, 1995] and operates in a multitiered client–server environment.
Saphira carries the basic components of real-world sensing and navigation
for intelligent mobile robot activities, including drive motors and range-
finding sensors as well as embedded controllers to manage various re-
sources. It handles the low-level details of sensor and drive management
such as collection of range-finding information from onboard sonars, posi-
tioning, heading, and so on. Saphira provides the intelligence for various
operations of the robot server. Saphira’s lowest level is interfaced with the
robot that provides a coherent method and protocols for communication
and control of the robot server. Saphira’s intermediate layers support
higher-level functions for navigation control and sensor interpretation.
Saphira also provides a Graphical User Interface (GUI) and command-
level interface through Colbert Executive for interactive monitoring and
manual control of both Saphira client and robot server with accessories.

5.4 Socket Programming 95

Colbert has two processes, namely finite state automata (FSA) and con-
current processes. A program in Colbert is an activity whose semantics are
based on FSA. Activity controls the overall behavior of the robot in several
ways, such as

• sequencing the basic actions that the robot performs;
• monitoring the execution of basic actions and other activities;
• executing activity subroutines;
• checking and setting the values of internal variables.

FSA are used to reason about computational complexity and decidability.
The advantage of Colbert lies in its ability to make an intuitive translation
from operator constructs in ANSI C to FSA capable of controlling the ro-
bot.

5.4 Socket Programming

A bi-directional communication device is used to communicate with an-
other process on the same machine or with a process running on other ma-
chines. Sockets are the only interprocess communications that are used to
permit communication among the different computers and the robot’s
server [Rubini, 1998]. A socket may be viewed as a software association
with a hardware port from which the processes read from or write to. In
LINUX, a socket is created by associating a reference to a port id in
each of the communicating programs with the following parameters: com-
munication style, namespace and protocol. Data are sent and received in
packed chunks called packets. The communication style determines how
these packets are handled and how they are addressed. Namespace speci-
fies how the socket addresses will be written and the protocol determines
how data are transmitted. The protocols used in socket programming are
TCP/IP, the APPLETALK network protocol, or UNIX local communica-
tion protocol. The above functionality is usually wrapped into methods of
a class Socket to provide a ready-to-use simple communication format for
other programs. JAVA makes things easier by providing a standard API li-
brary and has built-in support for socket programming.

In a client–server architecture, a socket may be configured to be a server
socket or a client socket, the difference being that a server socket continu-
ously checks (listens) for a connect request from a client, while the client
socket actually initiates the connection request. The server socket then

96 5 Robot Programming Packages

validates and accepts the client connection following which interprocess
communication begins.

Here we are concerned with implementing a network interface in our
custom programs. This is achieved by creating programs with client–server
interfacing, which means each program consists of two different parts, i.e.
the server side and the client side. Here one must not be confused with the
ARIA client–server concept discussed in the preceding sections. While the
robot servers ‘serve’ the ARIA client program which executes robotic
tasks, at the same time the ARIA client itself acts as a server for a remote
machine connected through a radio network, where client’s programs are
used as remote control front ends. Front ends are discussed in a subsequent
chapter. Here we will discuss the concepts of developing the network
server programs using socket programming.

The server: The server is the program running on the robot and it offers
all services to a client. Usually these may be instantaneous robot parame-
ters, environment characteristics such as sonar readings, images from the
camera, etc., depending on the application. Server programs have been de-
veloped in C++, with the strong support of available libraries for conven-
ience of coding.

The client: The client program, written in JAVA, runs on a local machine
and it sends requests or commands to the server either to execute a routine
or to procure data as mentioned earlier.

The socket-programming concept has been used in the design of the cli-

ent–server architecture. A socket is a logical reference to hardware or a
software port on to which programs can write or read data. Such a socket is
wrapped with formatting functions for the purpose of communicating for-
matted data instead of binary data. A server creates a socket and listens,
i.e. it waits till a client requests connections. On reception of a request, it
accepts the client by acknowledging the client connection.

5.4.1 Socket Programming in ARIA

ArSocket is a wrapper, around the socket network layer, which allows
clients to use the socket’s networking interface in an operating system in-
dependently using standard socket functions. This class also contains the
file descriptor which identifies the socket to the operating system. In the
Windows operating system the networking subsystem needs to be initial-
ized and shut down individually by each program. Therefore, a program

5.4 Socket Programming 97

starts by calling the static function ArSocket::init() and exit by
calling ArSocket::shutdown(). For programs that use
Aria::init() and Aria::uninit(), calling
ArSocket::init() and ArSocket::shutdown() is unneces-
sary. The ARIA initialization functions take care of this and these func-
tions do nothing in LINUX.

A server socket may be created by using the following constructor:

ArSocket::ArSocket (int port, Type type),
where port is the port id and type is the type of protocol to be used and is
usually ArSocket::TCP

Alternatively one may call the following function:

ArSocket::open(int port,Type type);

This server socket can be used to accept a client by using the following
function:
ArSocket::accept(ArSocket *clientSocket);

The accept function listens at the port id for a client to request

for connection and gets a pointer (ArSocekt*) to the remote client
for use in the program. All inputs and outputs are now directed from and
to clientSocket. To connect to a server socket one has to use the
constructor:

ArSocket::ArSocket (const char * host, int
port, Type type)

It connects to the socket at a given port id on the machine specified by the
host id. Alternatively one may use

ArSocket::connect(const char * host, int port,Type
type);

One may read and write data through the socket using the following func-
tions :

size_t ArSocket::read (void * buff, size_t
len,
unsigned int msWait = 0) [inline]

98 5 Robot Programming Packages

Read from the socket

Parameters:
buff buffer to read into
len how many bytes to read
msWait if 0, don't block, if > 0 wait this

long for data
Returns: number of bytes read

size_t ArSocket::write (const void * buff,
size_t len) [inline]

Write to the socket.

Parameters:
buff buffer to write from
len how many bytes to write

Returns: number of bytes written

5.5 BotSpeak Speech System

BotSpeak is speech-synthesis, speech-recognition software integrated for
use with Pioneer Intelligent Mobile Robots. It is basically a C library and
provides a set of predefined functions which can be used for speech-
synthesis or recognition. Here we will briefly cover a few functions used
for speech synthesis. For speech recognition the BotSpeak server defines
contexts for each program and words present in the contexts are recog-
nized. Speech-recognition functions are not covered here as they have not
been used in the programs.

5.5.1 Functions

void bsInit(void)

This function starts the ViaVoice/BotSpeak server if it is not already run-
ning and initializes BotSpeak. If the server running from a previous call
to bsInit(), it connects BotSpeak automatically. This function also
clears out any words or contexts that the server already had, which means
only one program can run at a time when connected to the server. This is

5.5 BotSpeak Speech System 99

designed in such a way that when one restarts a client program, the pro-
gram will start in a known state without any ambiguities created due to
contexts defined by other programs.

void bsSpeak(char *string)

This function passes the string argument to the ViaVoice/BotSpeak server
to synthesize voice and pronounce or utter the string of characters. The
microphone will be turned off while synthesis takes place. This function
can also be used to change the voice qualities by sending a certain prede-
fined sequence of characters. Some of these are listed below.

`vbN Pitch, N in range 0 to 100
`vhN Head size, N in range 0 (tiny head) to 100 (huge head)
`vrN Roughness, N in range 0 (smooth) to 100 (rough)
`vyN Breathiness, N in range 0 (not breathy) to 100 (breathy whisper)
`vfN Pitch fluctuation, N in range 0 (monotone) to 100 (wide fluctua-

tion)
`vsN Speed, N in range 0 (slow) to 250 (Fast)
`vvN Volume, N in range 0 (soft) to 100 (loud)
`vg0 Set voice to male
`vg1 Set voice to female
`00 Reduced emphasis
`0 No emphasis
`1 Normal emphasis
`2 Added emphasis
`3 Heavy emphasis
`4 Very heavy emphasis

Note that if the function is called while there is no playing or synthesis go-
ing on the function will return immediately, but if synthesis or playing is
occurring it will pause before returning (until at least some of the previous
synthesis is done).

void bsFinishSpeaking(void)

This function waits until the previous speech synthesis is completed i.e.
this function will return when BotSpeak has finished with the previous
bsSpeak() or bsPlay() (bsPlay() is called for playing an au-
dio file). The following program illustrates how to use BotSpeak in a C++
program for speech synthesis.

100 5 Robot Programming Packages

//BotSpeak.cpp
//BotSpeak sample program
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
extern "C"{
#include "BotSpeak.h"
}
int main(int argc, char **argv)
{
char text[121];
// initialize botspeak, if the server isn't run-
ning this starts it
bsInit();
// say something so people know we're alive
bsSpeak("Type any sequence of words and I shall
say it.");
bsFinishSpeaking();

while(1)
{
printf("Enter text:-");
fgets(text,120,stdin);
printf("saying: %s",text);
bsSpeak(text);
bsFinishSpeaking();
if (strcmp(text,"exit\n")==0) break;
}
return(0);
}

Compilation and linking in LINUX
gcc -c -I$ BotSpeak /include botspeak.cpp
gcc -o botspeak -L$BOTSPEAK/lib -lbotspeak botpeak.o

5.6 Small Vision System (SVS)

The Small Vision System (SVS) is meant to be a development environment
for applications requiring stereo processing. It consists of a library of func-
tions for performing image capture and stereo correlation. Images come in
via a pair of aligned video cameras, called a stereo head. A video-capture

5.6 Small Vision System (SVS) 101

board or boards in the PC digitizes the video streams into main memory. The
SVS functions are then invoked, given a stereo pair as an argument. These
functions compute a disparity image, which the user can display or process
further. The SVS provides library functions for C that are defined under
svs.h. However for C++ programmers built-in classes are available for
ease of use under svsclasses.h. We will briefly discuss the classes that
are available for image capture and processing in C++.

5.6.1 SVS C++ Classes

There are three main classes for SVS: classes that encapsulate stereo im-
ages, classes that produce the images from video or file sources, and
classes that operate on stereo images to create disparity and 3D images.
These classes are declared in the header file src/svsclass.h. The
basic idea is to have one class (svsStereoImage) for stereo images and
the resultant disparity images, which performs all necessary storage alloca-
tion and insulates the user from having to worry about these issues. Stereo
image objects are produced from video sources, stored image files, or
memory buffers by the svsAcquireImages classes, which are also re-
sponsible for rectifying the images according to parameters produced by
the calibration routines. Disparity images and 3D point clouds are pro-
duced by the stereo processing class svsStereoProcess acting on a
stereo image object, with the results stored back in the stereo image object.
The basic operations are:

1. Make a video source object and open it. Which video source is used

depends on which framegrabber interface file has been loaded.
2. Open the video source.
3. Set the frame size and any other video parameters you wish, and read

in rectification parameters from a file.
4. Start the video acquisition.
5. Loop:

a. Get the next stereo image.
b. Do various processing required on the images.
c. Display the results.

The different classes that are defined under svsclasses.h are elabo-
rated as follow.

102 5 Robot Programming Packages

5.6.2 Parameter Classes

svsImageParams: Image frame size and subwindow parameters
svsRectParams: Image rectification parameters
svsDistParams: Image stereo processing (disparity) parameters

Parameter classes contain information about the format or processing char-
acteristics of stereo image objects. Each stereo image object contains an
instance of each of the above classes. Application programs can read these
parameters to check on the state of processing or the size of images, and
can set some of the parameters, either directly or through class member
functions.

Class svsImageParams: Frame size and subwindow parameters for
stereo images. In general, the only way these parameters should be
changed is through member functions of the appropriate objects, e.g. using
SetSize in the svsVideoImages class.

Class svsRectParams: Rectification parameters for stereo images.
They are used internally by the rectification functions. Application pro-
grams should not change these parameters, and will have few reasons to
look at the parameter values. Rectification parameters are generated ini-
tially by the calibration procedure, then written to and read from parameter
files.

Class svsDistParams: Disparity parameters control the operation of
stereo processing, by specifying the number of disparities, whether
left/right filtering is on, and so on. Most of these parameters can be modi-
fied by application programs.

5.6.3 Stereo Image Class

svsStereoImage: Stereo image class

The stereo image class encapsulates information and data for a single ste-
reo image pair, along with any of its processed results, e.g., disparity im-
age or 3D point cloud. Stereo image objects are usually produced by one
of the image acquisition classes (svsVideoImages or
svsFileImages), then processed further by an svsStereoProcess
object. An svsStereoImage object holds information about its own
state. For instance, there are Boolean flags to tell if there is a valid set of

5.6 Small Vision System (SVS) 103

stereo images, whether they are rectified or not, if a valid disparity image
has been computed, and so on. The svsStereoImage class handles all nec-
essary allocation of buffer space for images. User programs can access the
image buffers, but should be careful not to de-allocate them or destroy
them

Constructor and Destructor
svsStereoImage();
~svsStereoImage();

Constructor and destructor for the class. The constructor initializes most
image parameters to default values, and sets all image data to NULL.

char error[256];

If a member function fails (e.g. if ReadFromFile returns false), then the er-
ror will usually contain an error message that can be printed or displayed.

Stereo Images and Parameters

bool haveImages;// true if good stereo images have
been captured
bool haveColor;// true if left image color array
present
bool haveColorRight;// true if right image color
array present
svsImageParams ip;// image format, particular to
each object
unsigned char *Left();// left image array
unsigned char *Right();// right image array
unsigned long *Color();// left-color image array
unsigned long *ColorRight();// right-color image
array

These members describe the stereo images present in the object. If stereo
images are present, haveImages is true. The stereo images are always
monochrome images, 8 bits per pixel. Additionally, there may be a color
image, corresponding to the left image, if requested. Color images are in
RGBX format (32 bits per pixel, first byte red, second green, third blue,
and fourth undefined). If the left color image is present, haveColor is
true. The color image isn’t used by the stereo algorithms, but can be used

104 5 Robot Programming Packages

in post-processing, for example, in assigning color values to 3D points for
display in an OpenGL window. Similarly, if the right color image is pre-
sent, haveColorRight is true. The color images may be input inde-
pendently of each other. Frame size parameters for the images are stored in
the variable ip. The parameters should be considered read-only, with one
exception: just before calling the SetImage function. The Left,
Right, and Color functions return pointers to the image arrays. User
programs should not delete this array, since the stereo object manages it.

Rectification Information

bool isRectified;//whether the rectification has
been done already
bool haveRect;//true if the rectification params
exist
svsRectParams rp;//rectification params, if they
exist

The images contained in a stereo image object (left, right and left-color)
can be rectified, that is, corrected for intra-image (lens distortions) and in-
ter-image (spatial offset) imperfections. If the images are rectified, then the
variable isRectified will be true. Rectification takes place in the
svsAcquireImage classes, which can produce rectified images using
the rectification parameters. The rectification parameters can be carried
along with the stereo image object, where they are useful in further proc-
essing, for example, in converting disparity images into a 3D point cloud.
If rectification parameters are present, the haveRect variable is true. The
rectification parameters themselves are in the rp variable.

Disparity Image

bool haveDisparity; // whether the disparity image
has been calculated yet
svsDisparityParams dp; // disparity image parame-
ters
short *Disparity(); // returns the disparity image

The disparity image is computed from the stereo image pair by an
svsStereoProcess object. It is an array of short integers (signed, 16
bits) in the same frame size as the input stereo images. The image size can
be found in the ip variable. It is registered with the left stereo image, so

5.6 Small Vision System (SVS) 105

that a disparity pixel at X,Y of the disparity image corresponds to the X,Y
pixel of the left input image. Values –1 and –2 indicate the absence of any
disparity information: –1 for low-texture areas, and –2 for disparities that
fail the left/right check. If the disparity image has been calculated and is
present, then haveDisparity is true. The parameters used to compute
the disparity image (number of disparities, horopter offset, and so on)
are in the parameter variable dp. The disparity image can be retrieved us-
ing the Disparity function. This function returns a pointer to the dis-
parity array, so it is very efficient. User programs should not delete this ar-
ray, since the stereo object manages it.

3D Point Array

bool have3D;// whether 3D information is available
int numPoints;// number of points actually found
float *X(), *Y(), *Z();// 3D point arrays

The 3D point arrays are the 3D points that correspond to each pixel in the
left input image. It has the same size (width and height) as the input stereo
images. The 3D point array is computed from the disparity image using the
external camera calibration parameters stored in rp. An svsStereo-
Process object must be used to compute it. Each point is represented by
a coordinate (X, Y, Z) in a frame centered on the left camera focal point.
The Z-dimension is the distance from the point perpendicular to the camera
plane, and is always positive for valid disparity values. The X-axis is hori-
zontal and the positive direction is to the right of the center of the image;
the Y-axis is vertical and the positive direction is down relative to the cen-
ter of the image (a right-handed coordinate system). Negative values of Z
are used to indicate there was no valid disparity reading at a pixel. If the
3D array is present, then have3D is true. The actual number of 3D points
present in the arrays is given by numPoints.

File I/O

bool SaveToFile(char *basename); // saves images
and params to files
bool ReadFromFile(char *basename); // gets images
and params from files
bool ReadParams(char *name); // reads just params
from file
bool SaveParams(char *name); // save just params
to file

106 5 Robot Programming Packages

Images and parameters in a stereo object can be saved to a set of files
(SaveToFile), and read back in from these files (ReadFromFile).
The basename is used to create a file set. For instance, if the basename is:

TESTIMAGE, then the files set is:
TESTIMAGE-L.bmp // left image, if present
TESTIMAGE-R.bmp // right image, if present
TESTIMAGE-C.bmp // left color image, if present
TESTIMAGE.ini // parameter file

Just the parameters can be read from and written to a parameter file, using
ReadParams and SaveParams.

5.6.4 Acquisition Classes

The list of acquisition classes that are used to get stereo image data are as
follows:

svsAcquireImages Base class for all acquisition
svsVideoImages Acquire from a video source
svsFileImages Acquire from a file or memory

source

Acquisition classes are used to get stereo image data from video or file

sources, and put into svsStereoImage structures for further process-
ing. During acquisition, images can be rectified, that is, put into a standard
form with distortions removed. Rectification takes place automatically if
the calibration parameters have been loaded into the acquisition class. The
two subclasses acquire images from different sources. svsVideoI-
mages uses the capture functions to acquire images from a video device
such as the MEGA-D stereo head. svsFileImages acquires images
from BMP files stored on disk.

Constructor and Destructor

svsAcquireImages();
virtual ~svsAcquireImages();

5.6 Small Vision System (SVS) 107

These functions are usually not called by themselves, but are implicitly
called by the constructors for the subclasses svsVideoImages and
svsFileImages.

Rectification

bool HaveRect();
bool SetRect(bool on);
bool GetRect();
bool IsRect();
bool ReadParams(char *name);
bool SaveParams(char *name);

These functions control the rectification of acquired images.
HaveRect() is true when rectification parameters are present; the nor-
mal way to input them is to read them from a file, with ReadParams().
The argument is a file name, usually with the extension .ini. If the ac-
quisition object has rectification parameters, they can be saved to a file us-
ing SaveParams(). Rectification of acquired images is performed
automatically if HaveRect() is true, and rectification processing has
been turned on with SetRect(). Calling ReadParams() will also
turn on SetRect(). The state of rectification processing can be queried
with GetRect(). If the current image held by the acquisition object is
rectified, the IsRect() function will return true.

Controlling the Image Stream

bool CheckParams()
bool Start()
bool Stop()
svsStereoImage *GetImage(int ms)

An acquisition object acquires stereo images and returns them when re-
quested. These functions control the image streaming process. Check-
Params() determines if the current acquisition parameters are consistent,
and returns true if so. This function is used in video acquisition, to deter-
mine if the video device supports the modes that have been set. Start()
starts the acquisition streaming process. At this point, images are streamed
into the object, and can be retrieved by calling GetImage(). GetI-
mage() wait upto 30 milliseconds for a new image before it returns; if no

108 5 Robot Programming Packages

image is available within this time, it returns NULL. If an image is avail-
able, it returns an svsStereoImage object containing the image, rectified if
rectification is turned on. The svsStereoImage object is controlled by the
acquisition object, and the user program should not delete it. The contents
of the svsStereoImage object are valid until the next call to GetI-
mage(). Start() returns false if the acquisition process cannot be
started. Stop() will stop acquisition.

Error String

char *Error()

Call this function to get a string describing the latest error on the acquisi-
tion object. For instance, if video streaming could not be started, Error()
will contain a description of the problem

Video Acquisition

The video acquisition classes are subclasses of svsAcquireImages.
The general class is svsVideoImages, which is referenced by user
programs. This class adds parameters and functions that are particular to
controlling a video device, e.g., frame size, color mode, exposure, and so
on. Particular types of framegrabbers and stereo heads have their
own subclasses of svsVideoImages. In general, the user programs
won’t be aware of these subclasses, instead treating them as a general
svsVideoImage object. To access the svsVideoImages object, the
special function svsGetVideoObject() will return an appropriate
object.

Video Object

svsVideoImages *svsGetVideoObject()

Returns a video acquisition object suitable for streaming video from a ste-
reo device. The particular video object that is accessed depends on the
video interface library that has been loaded. This function creates a new
video object on each call; so several devices can be accessed simultane-
ously, if the hardware supports it.

5.6 Small Vision System (SVS) 109

Opening and Closing

bool Open(char *name = NULL)
bool Open(int devnum)
bool Close()

The device must be opened before capturing the images by the stereo de-
vice. The Open() call opens the device, returning true if the device is
available. An optional name can be given to distinguish among several ex-
isting devices. The naming conventions for devices depend on the type of
device; typically it is a serial number or other identifier. These identifiers
are returned by the Enumerate() call.

Alternatively, a number can be used, giving the device in the order re-
turned by the Enumerate() function, i.e. 1 is the first device, 2 is the
second, and so on. A value of 0 indicates any available device. Upon open-
ing, the device characteristics are set to default values. To set values from
a parameter file, use the ReadParams() function. A stereo device is
closed and released by the Close() call.

Image Framing Parameters

bool SetSize(int w, int h)
bool SetSample(int decimation, int binning)
bool SetOffset(int ix, int iy, int verge)
bool SetColor(bool on, bool onr = false)
bool CheckParams()

These functions control the frame size and sampling mode of the acquired
image. SetSize(w,h) sets the width and height of the image returned by the
stereo device. In most cases, this is the full frame of the image. For in-
stance, most analog frame grabbers perform hardware scaling, so that al-
most any size image can be requested, and the hardware scales the video
information from the imager to fit that size. In most analog frame grabbers,
the sampling parameters (decimation and binning) are not used, and a full-
frame image is always returned, at a size given by the SetSize() func-
tion. Some stereo devices, such as the MEGA-D, allow the user to specify
a subwindow within the image frame. The subwindow is given by a com-
bination of sampling mode and window size. The sampling mode can be
specified by SetSample(), which sets binning and decimation for the
imager. The MEGA-D supports sub-sampling the image at every 1, 2 or 4
pixels; it also supports binning (averaging) of 1 or 2 (a 2 × 2 square of pix-
els is averaged). For example, with binning = 2 and decimation = 2, the

110 5 Robot Programming Packages

full frame size is 320 × 240 pixels. Using SetSize(), a smaller sub-
window can be returned. The offset of the subwindow within the full frame
comes from the SetOffset() function, which specifies the upper left
corner of the subwindow, as well as a vergence between the left and right
images. SetColor() turns color on the left image on or off. Addition-
ally, some applications require color from the right imager also, and setting
the second argument to true will return a color image for the right imager.
Generally, returning color requires more bus bandwidth and processing, so
use color only if necessary.

The video frame parameters can be set independently, and not all com-
binations of values are legal. The CheckParams() function returns true
if the current parameters are consistent. None of the frame or sampling
mode parameters can be changed while images are being acquired, except
for the offset parameters. These can be changed at any time, to pan and tilt
the subwindow during acquisition.

Image Quality Parameters

bool SetExposure(bool auto, int exposure, int
gain)
bool SetBalance(bool auto, int red, int blue)
bool SetLevel(bool auto, int brightness, int con-
trast)

These functions set various video controls for the quality of the image, in-
cluding color information, exposure and gain, brightness and contrast. Not
all stereo devices support all of the various video modes described by these
parameters. In general, parameters are normalized to be integers in the
range [0,100]. SetExposure() sets the exposure and gain levels for the
device. If auto is chosen, the manual parameters are ignored. SetBal-
ance() sets the color balance for the device. Manual parameters for red
and blue differential gains are between –40 and 40. If auto is chosen, the
manual parameters are ignored. SetLevel() sets the brightness and
contrast for the device. In auto mode, the brightness value is ignored. Con-
trast is always set manually. These functions can be called during video
streaming, and their effect is immediate. The following program illustrates
how to obtain an image and store it in a file.

// imagesave.cpp
#include<stdio.h>
#include<stdlib.h>

5.6 Small Vision System (SVS) 111

#include<string.h>
#include<math.h>
#include<string>
#include"svsclass.h"
#define H 240
#define W 320

svsVideoImages *videoObject; // source of images
svsStereoImage *imageObject;
char filename[50],name[50];
char color_image[4*W*H+104];
int main(int argc, char **argv)
{
printf(“\nEnter file name :”);
scanf(“%s”,name);
videoObject = getVideoObject();
//size
svsImageParams *ip=videoObject->GetIP();
ip->width=W;
ip->height=H;
//sample
videoObject->decimation=2;
videoObject->binning=2;
svsHasMMX=true;
ip->linelen=ip->width;
ip->lines=ip->height;
ip->vergence=0;
bool ret;
videoObject->ReadParams("/root/megad-75.ini");
ret = videoObject->Open(0);
if (!ret) {printf("Can't open frame grabber.\n"); re-
turn 0; }
else
printf("Opened frame grabber.\n");
if (!videoObject->CheckParams())
{
printf("Incorrect Params\n");
videoObject->Close();
exit(1);
}
videoObject->Start();
videoObject->SetColor(true);
videoObject->exposure=100;
videoObject->gain=95; //30; //Color 30
videoObject->blue=20;
videoObject->red=20;
videoObject->SetDigitization();
//Image grabber up and running

112 5 Robot Programming Packages

videoObject->Start();
for(int i=0;i<5;i++) imageObject = videoObject-
>GetImage(400);
if (imageObject != NULL)
{ sprintf(filename,"/home/images/%s",name);
if(imageObject->haveImages)
{
 memcpy(color_image,imageObject->color,4*W*H);
 imageObject->SaveToFile(filename);sendImage();
}
videoObject->Stop();
 }
printf("Done , exiting\n");
videoObject->Close();
imageObject->Close();
// shutdown
Aria::shutdown();
return(0);
}

/*
For Compilation and Linking
g++ -c -I$SVS/src imagesave.cpp
g++ -o imagesave -L$SVS/bin -ldl -lcap -lsvs -pthread
sampler.o
*/

5.7 Multithreading

Multithreading is a conceptual programming technique. The program or
the process is subdivided into two or more subprograms, which are imple-
mented at the same time in parallel. Each flow of control is a separate tiny
program known as a thread, which runs independently except when two or
more threads compete for the same resources and share a part of the CPU
time with other threads. The term parallel could be misleading as there is
no true parallel execution, but only a time-shared operation where the CPU
switches at random from one thread to another after a certain time. Thus
threads can be either waiting, active or dead/suspended. The CPU time
conflict is usually resolved by setting priorities and the thread with the
highest priority gets the largest chunk of the CPU time.

5.9 Summary 113

Multithreading is usually implemented by defining a function run() in
each of the routines to be run in parallel and then defining the thread body
within it. The CPU uses these run routines to implement multithreading.
The same principle is also made use of in achieving synchronized motion
of the robots by means of Actions. Actions are nothing but synchronously
running motion command threads which can allow the robot to synchro-
nize instantaneous state variables with motion. The run() method is the
only method in which the thread’s behavior can be implemented.

5.8 Client Front-End Design Using JAVA

The client front-end design is very useful in a multiplatform network. The
design can help the client to add various modules in the same program and
test their different algorithms with minimum modifications, which releases
the burden to design the front-end. Here, the program execution may be
controlled and monitored by text input, but it is always advantageous to
have a display which emulates a real-life control panel pertaining to the
specific needs of the task. Therefore the Graphical User Interface (GUI)
front-end gains importance for better representation and ease of control.
Adjustable control components can be added to provide means for interac-
tive control of run-time parameters. Examples of such components are
choice boxes, text fields, buttons, scroll bars, etc.

GUI design may be accomplished in different ways using various pro-
gramming languages such as Visual Basic, C++, JAVA, Delphi, etc.
Among these front-end design tools, JAVA is chosen to be the best be-
cause of its platform independence and it has built-in support for most
commonly used GUI components. However, it gives the programmer the
power to build custom components by inheriting and adding properties to
the existent components. In subsequent chapters we will discuss different
client–server programs using JAVA.

5.9 Summary

This chapter gives essential ingredients for readers to develop the various
application programs on robots using ARIA libraries.

6 Robot Parameter Display

6.1 Introduction

It is always essential to measure the robot state parameters such as its
current position and heading, in which direction it is moving and others
such as battery voltage. The robot parameters are used almost in every ap-
plication of the robot, which helps during troubleshooting. Here a sample
client –server program is given, whose objective is to collect all the robot
parameters and display them within a frame on the client’s screen. The cli-
ent gets the information about the robot parameters from the server pro-
gram running on the robot continuously and displays a frame showing all
the parameters, such as the robot’s name, its type, maximum translational
and rotational velocity, current translational and rotational velocity, its bat-
tery voltage, its current position in rectangular coordinates, its heading,
right and left wheel velocities etc. These parameters are generally moni-
tored at the client, while the robot does some task in the environment. This
helps the programmer to monitor and control the robot from a distance.
The subsequent section elaborates the algorithm and client–server program
to get the robot parameters and display them.

6.2 Flow Chart and Source Code for Robot

The client and server flow charts are given in Figs. 6.1 and 6.2. The server
runs on the onboard computer where robot parameters are available and
the client displays these parameters in a program window. The sample
program given in Listing 6.1 illustrates the server program written in C++
and Listing 6.2 illustrates the client program written in JAVA. The pro-
gram log session and output are shown in Fig. 6.3.

Parameter Display

116 6 Robot Parameter Display

Fig. 6.1. Server program’s flow chart

Fig. 6.2. Client program’s flow chart

Start

Open the Server socket and wait
for client to connect.

Collect the Robot Pa-
rameters required.

Is Client
Connected

End

Send parameters to the
Client.

Wait for acknowl-
edgement.

Yes

No

Start

Open the client
socket and connect

to the server.

Collect the robot
parameters from

the server.

Is client
connected

End

Send the ac-
knowledgement.

Yes

No

Display the ro-
bot Parameters.

6.2 Flow Chart and Source Code for Robot Parameter Display 117

Listing 6.1. Server program

//filename : param.cpp
#include "Aria.h"
#include <string>

int main()
{
ArSerialConnection con;
ArRobot robot;

Aria::init(Aria::SIGHANDLE_THREAD);

if (con.open() != 0)
{
printf("Could not open the connection");
exit(1);
}

robot.setDeviceConnection(&con);

if (!robot.blockingConnect())
{
printf("\n Could not connect to robot");
Aria::shutdown();
exit(1);
}

// The string to send to the client. Done here as a
char array so that its
// easier to figure out its length.
// The buffer in which to recieve the hello from the
client
 char buff[100];

// The size of the string the client sent
size_t strSize;

// The socket object
ArSocket serverSock, clientSock;

// Initialize Aria. For Windows, this absolutely must
be done. Because
// Windows does not initialize the socket layer for
each program. Each
// program must initialize the sockets itself.

118 6 Robot Parameter Display

// Lets open the server socket
if (serverSock.open(7775, ArSocket::TCP))
printf("Opened the server port\n");
else
{
printf("Failed to open the server port: %s\n",
 serverSock.getErrorStr().c_str());
return(-1);
}

// Lets wait for the client to connect to us.
if (serverSock.accept(&clientSock))
 printf("Client has connected\n");
 else
printf("Error in accepting a connection from the cli-
ent: %s\n",
serverSock.getErrorStr().c_str());

// Lets send the string 'Hello Client' to the client.
The write should
// return the same number of bytes that we told it to
write. Otherwise,
// its an error condition.

std::string robtype = robot.getRobotType();
std::string robname = robot.getRobotName();

robot.runAsync(true);

char fixeddata[100];

sprintf(fixeddata,"%s|%s|%.0lf|%.0lf|%.0lf|%.0lf",
robname.c_str(),robtype.c_str(),robot.getRobotRadius(),
robot.getRobotDiagonal(),robot.getMaxTransVel(),
robot.getMaxRotVel());

clientSock.write(fixeddata,strlen(fixeddata));
clientSock.read(buff,sizeof(buff));

do{
char datastring[100];
robot.lock();
int a;
sprintf(datastring,"%.0lf|%.0lf|%.0lf|%.0lf|%.0lf|%.0lf
|%.1lf|",
robot.getX(),robot.getY(),robot.getTh(),robot.getVel(),
robot.getLeftVel(),robot.getRightVel(),
robot.getBatteryVoltage());

6.2 Flow Chart and Source Code for Robot Parameter Display 119

robot.unlock();

if((a=clientSock.write(datastring, strlen(datastring)))

 == strlen(datastring))
{}
else
{
printf("Error in sending hello string to the client
%d\n",a);
return(-1);
}

// Lets wait for the client to say hello to us.
strSize=clientSock.read(buff, sizeof(buff));
// If the amount read is 0 or less, its an error condi-
tion.
if (strSize > 0)
{
// Terminate the string with a NULL character.
 buff[strSize]='\0';
}
else
{
printf("Error in waiting/reading the hello from the
client\n");
return(-1);
}
}while(true);

// Now lets close the connection to the client
clientSock.close();
printf("Socket to client closed\n");
// And lets close the server port
serverSock.close();
printf("Server socket closed\n");

// Uninitialize Aria
Aria::uninit();
Aria::shutdown();
// All done
return(0);
}

120 6 Robot Parameter Display

Compilation and execution: The following line is used for the compila-
tion and execution of the server program in LINUX.

g++ -o param –I$ARIA/include – L$ARIA/lib –ldl –pthread
–lAria param.cpp

Listing 6.2. Client program

// filename : Params.java
import java.net.*;
import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Params extends JFrame implements Runnable
{
Socket sc;
DataInputStream dis;
DataOutputStream dos;
String input;
StringTokenizer st;

Label robname,robtype,maxvel,maxrvel,vel,rvel,lvel,
robradius,robdiagonal,batv,posx,posy,head;

public Params()
{
// set the title of the frame here.
setTitle(“Robot Parameters”);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());

//position y
Box mainbox = new Box(BoxLayout.Y_AXIS);
Box sub[]= new Box[12];

for(int i = 0;i<12;i++)
 sub[i] = new Box(BoxLayout.X_AXIS);

// for robot name
robname=new Label(“-“);
sub[0].add(new Label(“Robot Name:”));
sub[0].add(Box.createGlue());
sub[0].add(robname);

6.2 Flow Chart and Source Code for Robot Parameter Display 121

//for robot type
robtype=new Label(“-“);
sub[1].add(new Label(“Robot Type:”));
sub[1].add(Box.createGlue());
sub[1].add(robtype);

//for robot radius
robradius = new Label(“0”);
sub[2].add(new Label(“Robot Radius:”));
sub[2].add(Box.createGlue());
sub[2].add(robradius);

//for robot diagonal
robdiagonal = new Label(“0”);
sub[3].add(new Label(“Robot Diagonal:”));
sub[3].add(Box.createGlue());
sub[3].add(robdiagonal);

// for max. velocity
maxvel = new Label(“0”);
sub[4].add(new Label(“Max.Translational Velocity:”));
sub[4].add(Box.createGlue());
sub[4].add(maxvel);

// for max rotational velocity
maxrvel = new Label(“0”);
sub[5].add(new Label(“Max.Rotational Velocity:”));
sub[5].add(Box.createGlue());
sub[5].add(maxrvel);

// for velocity
vel = new Label(“0”);
sub[6].add(new Label(“Robot Velocity:”));
sub[6].add(Box.createGlue());
sub[6].add(vel);

// for rotational velocity
rvel = new Label(“0”);
sub[7].add(new Label(“Right wheel velocity:”));
sub[7].add(Box.createGlue());
sub[7].add(rvel);

// for left wheel velocity
lvel = new Label(“0”);
sub[8].add(new Label(“Left wheel velocity:”));
sub[8].add(Box.createGlue());
sub[8].add(lvel);

122 6 Robot Parameter Display

//for battery voltage
batv = new Label(“0”);
sub[9].add(new Label(“Battery Volatage:”));
sub[9].add(Box.createGlue());
sub[9].add(batv);

//for position x
posx = new Label(“0,0”);
sub[10].add(new Label(“Position(X,Y):”));
sub[10].add(Box.createGlue());
sub[10].add(posx);

// for heading
head = new Label(“0”);
sub[11].add(new Label(“Heading:”));
sub[11].add(Box.createGlue());
sub[11].add(head);

for(int i= 0;i<12;i++)
mainbox.add(sub[i]);
cp.add(mainbox);
addWindowListener(new WindowAdapter()
{
public void windowClosing(WindowEvent e)
{
System.exit(0);
}
});

// connect the client to the server here.
try
{
int n;
sc=new Socket(“192.168.0.9”,7775);
dis=new DataInputStream(sc.getInputStream());
dos=new DataOutputStream(sc.getOutputStream());
byte[] b = new byte[1024];

synchronized(dis)
{
n=dis.read(b);
}
input = new String(b,0,n);
System.out.println(n+”Server:”+input);
Thread.sleep(500);
dos.write((new String(“recd”)).getBytes());
dos.flush();

6.2 Flow Chart and Source Code for Robot Parameter Display 123

// taking the initial robot parameters.
st = new StringTokenizer(input,”|”);
robname.setText(st.nextToken());
robtype.setText(st.nextToken());
robradius.setText(st.nextToken());
robdiagonal.setText(st.nextToken());
maxvel.setText(st.nextToken());
maxrvel.setText(st.nextToken());
invalidate();
validate();
}
catch(Exception ex)
{
System.out.println(“Its here...its here”);
ex.printStackTrace();
}
setResizable(false);
pack();
setVisible(true);
}

// the run time settings are done here.
public void run()
{
int n;
if(sc!=null&&dis!=null)
{
System.out.println(“Ready”+sc.toString()+
dis.toString());
try
{
do
{
byte[] b= new byte[1024];

// read the run time robot parameters.
synchronized(dis)
{
n=dis.read(b);
}
input = new String(b,0,n);
System.out.println(n+”Server:”+input);
Thread.sleep(500);
dos.write((new String(“recd”)).getBytes());
dos.flush();
st = new StringTokenizer(input,”|”);

124 6 Robot Parameter Display

// set the run time readings in the JAVA Frame

posx.setText(st.nextToken()+”,”+
st.nextToken());
head.setText(st.nextToken());
vel.setText(st.nextToken());
lvel.setText(st.nextToken());
rvel.setText(st.nextToken());
batv.setText(st.nextToken());
invalidate();
validate();
}while(input!=null);
dis.close();
sc.close();
}
catch(Exception ex)
{
ex.printStackTrace();
}
}
}
public static void main(String arg[])
{
Params p =new Params();
try
{
Thread t = new Thread(p);
t.start();
}
catch(Exception e){}
}
}

Program log session

Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p

6.3 Summary 125

Opened the server port
Client has connected

Disconnecting from robot.

Fig. 6.3. Parameter program output

6.3 Summary

This chapter highlights the flow chart and the program code to display
various parameters of the robot which helps writing programs for real time
applications. Fig. 6.3 displays the JAVA Frame that contains the robot pa-
rameters, such as the name of the robot (“arcane”) and its type (“Pioneer”).
The robot has a maximum translational velocity of 2200 mm/sec and the
maximum rotational velocity is 500 mm/sec. Similarly, the robot’s coordi-
nates are currently (−712 mm, 408 mm) with respect to the starting point.
The robot’s battery voltage is 11.9 volts, while its heading is 115°. When-
ever these parameters change they are reflected in the JAVA frame run-
ning on the client machine.

7 Program for BotSpeak

7.1 Introduction

Some mobile robots have loudspeakers through which they announce
their decisions, which helps the people in and around to know what the
robot is doing or what it is going to do. Sometimes it may announce the
instructions to follow which makes the robot applications more interac-
tive and user friendly. This sample client–server program speaks the
text entered by the user, which is achieved with the help of the
BotSpeak library available with the robot. The program running at the
client takes the text which the user wants the robot to speak. It then
sends it to the server program running in parallel on the robot. The
server program then sends this text to the speech engine on the robot,
which decodes it and finally sends the modulated electric signal to the
loud speaker, so the robot is able to speak what you type at the client.
The speech engine follows English grammar. So the text typed at the
client is spoken by the robot with the help of the server program run-
ning on the robot. The communication between the client and the server
is through the common socket used by both.

7.2 Flow Chart and Source Code for BotSpeak Program

The client and server flow charts used for the BotSpeak program are
illustrated in Figs. 7.1 and 7.2 and their sample programs written in
C++ and Java are shown in Listing 7.1 and Listing 7.2 respectively.
The BotSpeak program output with program log session is depicted in
Fig. 7.3.

128 7 Program for BotSpeak

Fig. 7.1. Server program’s flow chart

Fig. 7.2. Client program’s flow chart

Start

Open the client socket and
connect to the server.

Get the String from the user
and send it to the server.

Is Client
Connected

End

Yes

No

Start

Open the Server socket and
wait for client to connect.

Get the String from the Client
and send it to the speech en-

gine.

Is Client Con-
nected

End

Yes

No

7.2 Flow Chart and Source Code for BotSpeak Program 129

Listing 7.1. Server program

// filename : botspeak.cpp
#include<iostream.h>
#include<string.h>
#include"Aria.h"
// for including the Botspeak.h for C
extern "C" {
#include"BotSpeak.h"
}

main()
{
// the Aria client and server socket.
ArSocket server,client;

// the size of the string to be passed.
size_t size;

// the main robot parameter.
ArRobot robot;

// the serial connection is done by this.
ArSerialConnection scon;

// the string for reading the socket.
char str[200];

// for initializing the botspeak machine
bsInit();

// Let the botspeak engine speak the instructions.
bsSpeak("\n Enter any string and I shall speak it ");
// Finish speaking is used for completing the speak in-
struction.
bsFinishSpeaking();

// used to run Aria in a single thread.
Aria::init(Aria::SIGHANDLE_THREAD);

// for opening the socket.
if(scon.open() != 0)
{
printf("\n Could not open the connection.");
exit(1);
}

130 7 Program for BotSpeak

robot.setDeviceConnection(&scon);

// wait for the robot to connect.
if(!robot.blockingConnect())
{
printf("\n Could not connect to the robot");
return 1;
}

// open the sever socket.
if(server.open(5001,ArSocket::TCP))
{
printf("\n Opened the Server Socket.");
}
else // else end the program.
{
printf("\n Unable to open the Server Socket.");
Aria::shutdown();
return 1;
}

// wait for the client to join.
if(server.accept(&client))
printf("\n Connected to Client.");

// run the robot in asynchronous mode.
robot.runAsync(true);

// loop to collect the string from client and pass it
to the speech engine

while(true)
{
// reading the string from the client.
size = client.read(str,sizeof(str));

// if client is disconnected then exit.
if (size < 0)
break;

if (size > 0)
{
str[size] = '\0';
printf("\n Client said :: %s %d
%d",str,strlen(str),size);

// finally speaking it here.

7.2 Flow Chart and Source Code for BotSpeak Program 131

bsSpeak(str);
bsFinishSpeaking();

if(!strcmp(str,"Disconnect"))
{
printf("Disconnecting from the client.");
break;
}
}
}

// closing and uninitialising sockets and others.
client.close();
printf("\n Closing the server");
server.close();
Aria::shutdown();
return 0;
}

Compiling and execution: The following text is used for the compilation
and execution of the program

g++ -o –I$ARIA/include –L$ARIA/lib – I$BOTSPEAK/include
–L$BOTSPEAK/bin // -lAria –ldl –pthread –lbotspeak
botspeak.cpp

Listing 7.2. Client Program

// filename BotSpeak.java
import java.awt.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.awt.event.*;

public class BOTSPEAK extends JFrame
{
Container container=null;
JTextField text;
String str = "Enter the text you want to hear..";
JLabel label,cLabel;
Socket socket;
InputStream input;
OutputStream output;

132 7 Program for BotSpeak

public BotSpeak(String title)
{
super(title);

container = this.getContentPane();
container.setLayout(null);

// label for displaying the connection status
JLabel cLabel = new JLabel("Not Connected");
cLabel.setBounds(200,280,150,30);
container.add(cLabel);

// label for displaying the text / string
label = new JLabel("",JLabel.CENTER);
label.setBounds(50,150,250,20);
container.add(label);

// text field defined here.
text = new JTextField(str,30);
text.setBounds(50,120,250,20);
text.addActionListener(new TextFieldListener());
container.add(text);

// Clear button for clearing the text-field
JButton clear = new JButton("Clear");
clear.setHorizontalAlignment(SwingConstants.CENTER);
clear.setBounds(140,200,80,25);
clear.addActionListener(new ButtonListener());
container.add(clear);

// open the client socket and connect it to the server
try
{
socket = new Socket("192.168.0.9",5001);
cLabel.setText("Connected to 192.168.0.9");
}
catch(UnknownHostException e)
{
System.out.println(e);
System.exit(ERROR);
}
catch(IOException e)
{
System.out.println(e);
System.exit(ERROR);
}

7.2 Flow Chart and Source Code for BotSpeak Program 133

//get the streams for input and output
try
{
output = socket.getOutputStream();
input = socket.getInputStream();
}
catch(IOException e)
{
System.out.println(e);
}

addWindowListener(new WindowEventHandler());
setDefaultCloseOpera-
tion(WindowConstants.DISPOSE_ON_CLOSE)
 setSize(400,350); /// set the size of the frame
 show();
 }

// function for collecting the string from the server.
 private String getString(InputStream in) throws
IOException
{
int c;
int pos =0;
byte buf[]= new byte[1024];
pos = in.read(buf);
if(pos<=0) return null;
String str = new String(buf,0,pos);

return str;
}

//function for writing the string to the socket.
public void writeString(OutputStream o,String s) throws
IOException
{
o.write(s.getBytes());
}

// function that is called when an instance of a class
is being destroyed.
void finalise()
{
try
{
socket.close();
}

134 7 Program for BotSpeak

catch(IOException e)
{
System.out.println(e);
}
}

// class used for implementing the window features
(window closing)
class WindowEventHandler extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
try
{
writeString(output,"Disconnect");
}
catch(IOException exc){}
System.exit(0);
}
}

// class used to implement action listener to the text
field.
class TextFieldListener implements ActionListener
{
public void actionPerformed(ActionEvent e)
{
label.setText(e.getActionCommand());
try
{
writeString(output,e.getActionCommand());
}
catch(IOException exp) {}
}
}

// class for implementing the action listener for the
buttons.
class ButtonListener implements ActionListener
{
public void actionPerformed(ActionEvent e)
{

7.2 Flow Chart and Source Code for BotSpeak Program 135

// the main function.
public static void main(String[] args)
{
BotSpeak frame = new BotSpeak("BotSpeak");
}
}

Program log session

Syncing 0
Attempting to close previous connection.
Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p

Opened the Server Socket.
Connected to Client.

Client said :: Hello! Welcome to the world of Robotics.
40 40
Client said :: India is my motherland 22 22
Client said :: Connected to 192.168.0.9 24 24
Client said :: Disconnect 10 10

Disconnecting from the client.
Closing the server
Disconnecting from robot.

text.setText("");
label.setText("");
text.requestFocus();
}
}

136 7 Program for BotSpeak

Fig. 7.3. Output from the BotSpeak program

7.3 Summary

The chapter highlights the usefulness of the BotSpeak program. Fig. 7.3
shows the JAVA Frame consisting of a text box and a “Clear” button. The
robot pronounces the text written in the text field. The IP address of the
server, i.e. 192.168.0.9 is displayed at the bottom right-hand side of the
display window.

8 Gripper Control Program

8.1 Introduction

Modern robot applications include tasks such as collecting garbage, hold-
ing objects etc. with the help of gripper commands of the robot. Here a cli-
ent–server program has been developed for the use of the gripper control.
The client program takes the input request, such as a gripper, and lift op-
eration, like “gripper open” or “lift up” etc. Then the appropriate command
in the form of a string is passed on to the server running on the robot,
which ultimately passes the command to the microcontroller, which per-
forms the requested operation. The client can perform any of the gripper
operations such as gripper open, gripper close, gripper stop, lift up, lift
down, lift stop, ready, stop, using standard functions defined on the robot
server.

8.2 Flow Chart and Source Code for Gripper

The client and server flow charts used for the gripper control program are
illustrated in the Figs. 8.1 and 8.2 and their sample programs written in
C++ and JAVA are shown in Listing 8.1 and Listing 8.2 respectively. The
gripper control program output with program log session is depicted in
Fig. 8.3.

Control Program

138 8 Gripper Control Program

Fig. 8.1. Flow chart of server program

Start

Open the Server socket and wait for
client to connect.

Get the gripper instruction and exe-
cute it.

Is Client Con-
nected

End

Yes

No

Get the beam break status and send it
to the client.

Is Beam bro-
ken?

Close the Gripper.

Send the beam status to the
client.

Yes

No

8.2 Flow Chart and Source Code for Gripper Control Program 139

Fig. 8.2. Flow chart of client program

Listing 8.1. Server source code for gripper control

// filename : gripper.cpp

#include"Aria.h"
#include<stdlib.h>
#include<signal.h>

ArSocket server,client;

// for ctrl+c used to terminate the program in between
void shutdown(int signum)

Start

Open the client socket and
connect to the server.

Get the gripper instruction
and execute it.

Is Client
Connected?

End

Get the beam break status
from the server and update

it in the main menu.

Yes

No

140 8 Gripper Control Program

printf("\n Closing the connection");
client.close();
server.close();
Aria::shutdown();
exit(0);
}

main()
{
// used for adding ctrl+c handler
struct sigaction sa;
memset(&sa,0,sizeof(sa));
sa.sa_handler = &shutdown;
sigaction(SIGINT,&sa,NULL);

// size of the received string
size_t size;

// the main object i.e. the robot
ArRobot robot;

// sconn for serial connection
ArSerialConnection scon;

// grip used for including gripper in the program
ArGripper grip(&robot);

char str[100];

// running the robot in a single thread.
Aria::init(Aria::SIGHANDLE_THREAD);

// opening the robot connection.
if(scon.open() != 0)
{
printf("\n Could not open the connection.");
exit(1);
}

robot.setDeviceConnection(&scon);

// connecting the robot
if(!robot.blockingConnect())
{
printf("\n Could not connect to the robot");
}

{

8.2 Flow Chart and Source Code for Gripper Control Program 141

// opening the server socket.
if(server.open(5011,ArSocket::TCP))
{
printf("\n Opened the Server Socket.");
}
else
{
printf("\n Unable to open the Server Socket.");
Aria::shutdown();
return 1;
}

// waiting for the client to join.
if(server.accept(&client))
{
printf("\n Connected to Client.");
}

// running the robot in asynchronous mode
robot.runAsync(true);

// activate the robots motors.
robot.enableMotors();

while(true)
{
// read the instruction from the client
size = client.read(str,sizeof(str));

// if client disconnected then break the loop
if (size < 0)
break;

if (size > 0)
{
str[size] = '\0';
robot.lock();

// if instruction = Open then open the gripper pads.
if (!strcmp(str,"Open"))
{
grip.gripOpen();
ArUtil::sleep(50);
}

// if instruction = Close then close the gripper pads.
if (!strcmp(str,"Close"))

142 8 Gripper Control Program

{
grip.gripClose();
ArUtil::sleep(50);
}

// if instruction = “Up” then move the gripper up.
if (!strcmp(str,"Up"))
{
grip.liftUp();
ArUtil::sleep(50);
}

// if instruction = “Down” then move the gripper up
if (!strcmp(str,"Down"))
{
grip.liftDown();
ArUtil::sleep(50);
}

// if instruction = “L Stop” Stop the lift
if (!strcmp(str,"LStop"))
{
grip.liftStop();
ArUtil::sleep(50);
}

// if instruction = “GStop” stop the gripper
if(!strcmp(str,"GStop"))
{
grip.gripStop();
ArUtil::sleep(50);
}

// if instruction = Store then place the gripper in
store pos.
if(!strcmp(str,"Store"))
{
grip.gripperStore();
ArUtil::sleep(50);
}

// if instruction = Ready then place the gripper in
ready pos.
if (!strcmp(str,"Ready"))
{
grip.gripperDeploy();
ArUtil::sleep(50);
}

8.2 Flow Chart and Source Code for Gripper Control Program 143

// if instruction = “Disconnect” then close sockets and
exit
if(!strcmp(str,"Disconnect"))
{
printf("Disconnecting from the client.");
client.close();
server.close();
Aria::shutdown();
return 0;
}
robot.unlock();
}

// get the beam break status.
str[0] = '\0';
robot.lock();
sprintf(str,"%d",grip.getBreakBeamState());

// if beam is broken then close the gripper
if(grip.getBreakBeamState())
{
grip.gripClose();
ArUtil::sleep(50);
}
robot.unlock();
//send the beam –break state.
client.write(str,strlen(str));
}
printf("\n Closing the server");
client.close();
server.close();
Aria::shutdown();
return 0;
}

Compilation and execution: The following text command is used for

compilation and execution.
g++ -o gripper –I$ARIA/include –L$ARIA/lib –ldl –
pthread –lAria gripper.cpp

144 8 Gripper Control Program

Listing 8.2. Client source code for gripper control

//filename : Gripper.java
import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.net.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

public class Gripper extends JFrame implements Ac-
tionListener
{
Container container=null;
boolean flag = true;
Socket socket;
InputStream input;
OutputStream output;
String string1 = "";

// the labels for various buttons
String str[] = {
"Gripper Open","Gripper Close","Lift Up","Lift Down",
"Grip Stop","Lift Stop","Store","Ready"
 };

JLabel cLabel;
char mnemonics[] = {'O','C','U','D','G','L','S','R'};
int bWidth = 120;
int bHeight = 25;

//location of various buttons
int loc [][] = {
{70,160},{210,160},{140,130},{140,190},
{10,240},{270,240},{10,210},{270,210}
};

public Gripper(String title)
{
super(title);

container = this.getContentPane();
container.setLayout(null);

//adding all the buttons.
for (int i = 0 ; i < str.length ; i++)

8.2 Flow Chart and Source Code for Gripper Control Program 145

{
JButton b = new JButton(str[i]);
b.setBounds(loc[i][0],loc[i][1],bWidth,bHeight);
b.setMnemonic(mnemonics[i]);
container.add(b);
b.addActionListener(this);
}

// label for showing connection status.
JLabel cLabel = new JLabel("Not Connected");
cLabel.setBounds(200,280,150,30);
container.add(cLabel);

// new label where the beams will be dispalyed
Lbl lbl = new Lbl();
lbl.setBounds(0,0,399,130);
container.add(lbl);

// open the client socket and connect to the server.
try
{
socket = new Socket("192.168.0.9",5011);
cLabel.setText("Connected to 192.168.0.9");
}
catch(UnknownHostException e)
{
System.out.println(e);
System.exit(ERROR);
}
catch(IOException e)
{
System.out.println(e);
System.exit(ERROR);
}

// get the input and the output streams
try
{
output = socket.getOutputStream();
input = socket.getInputStream();
}
catch(IOException e)
{
System.out.println(e);
}

146 8 Gripper Control Program

addWindowListener(new WindowEventHandler());
 setDefaultCloseOpera-
tion(WindowConstants.DISPOSE_ON_CLOSE)
setSize(400,350); //set the size of the frame
show();

String string="0";//for no beam break state.
try
{
while(flag)
{
// for beam break state.

if(string.equals("1")||string.equals("2")||string.equal
s("3"))
{
writeString(output,"Close");
string = "0";
}
else
{
// do nothing
if (string1.equals(""))
{
writeString(output,"Hello");
}
else
{
writeString(output,string1);
System.out.println(string1);
string1 = "";
}
}
string = getString(input);
lbl.setString(string);
lbl.repaint();
}
}
catch(IOException e){}
}

// function for performing the action when buttons are
pressed.
public void actionPerformed(ActionEvent ae)
{
String s = ae.getActionCommand();

8.2 Flow Chart and Source Code for Gripper Control Program 147

if (s.equals(str[0])) string1 = "Open";
if (s.equals(str[1])) string1 = "Close";
if (s.equals(str[2])) string1 = "Up";
if (s.equals(str[3])) string1 = "Down";
if (s.equals(str[4])) string1 = "GStop";
if (s.equals(str[5])) string1 = "LStop";
if (s.equals(str[6])) string1 = "Store";
if (s.equals(str[7])) string1 = "Ready";
}

// destructor function
void finalise()
{
try
{
socket.close();
}
catch(IOException e)
{
System.out.println(e);
}
}

// function to get the string from the server.
private String getString(InputStream in) throws IOEx-
ception
{
int c;
int pos =0;
byte buf[]= new byte[1024];

pos = in.read(buf);
if(pos<=0) return null;
String str = new String(buf,0,pos);
return str;
}

// function to write the string to the socket.
public void writeString(OutputStream o,String s) throws
IOException
{
o.write(s.getBytes());
}

// class to implement window functions.
class WindowEventHandler extends WindowAdapter
{

148 8 Gripper Control Program

public void windowClosing(WindowEvent e)
{
flag = false;
try
{
writeString(output,"Disconnect");
}
catch(IOException exc){}
System.exit(0);
}
}

// finally the main
public static void main(String args[])
{
Gripper frame = new Gripper("Gripper");
}

// class for displaying the beams within a Jlabel.
class Lbl extends JLabel
{
public String s="0";
public void setString(String s1)
{
s = s1;
}
public void paint(Graphics g)
{
g.setColor(Color.black);
g.drawString("Inner",10,60);
g.drawString("Inner",360,60);
g.drawString("Outer",10,110);
g.drawString("Outer",360,110);
g.setColor(Color.yellow);

if (s.equals("0"))
{
g.fillRect(50,50,300,10); // inner beam
g.fillRect(50,100,300,10);//outer beam
}
if(s.equals("1"))
{
g.fillRect(50,50,140,10); // inner beam broken
g.fillRect(210,50,140,10);//inner beam broken
g.fillRect(50,100,300,10);//outer beam
}
if(s.equals("2"))

8.2 Flow Chart and Source Code for Gripper Control Program 149

{
g.fillRect(50,50,300,10); // inner beam
g.fillRect(50,100,140,10); //outer beam broken
g.fillRect(210,100,140,10); //outer beam broken
}
if(s.equals("3"))
{
g.fillRect(50,50,140,10); // inner beam broken
g.fillRect(210,50,140,10); // inner beam broken
g.fillRect(50,100,140,10); //outer beam broken
g.fillRect(210,100,140,10); // outer beam broken
}
}
}
}

Program log session

Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p

Opened the Server Socket.
Connected to Client.Gripper: querried, using General
IO.
Disconnecting from the client.
Aria: Received signal 'SIGINT'. Shutting down.
Disconnecting from robot.

Closing the connection

150 8 Gripper Control Program

Fig. 8.3. Output of the gripper control program

8.3 Summary

In this chapter the concept of gripper control is explained with the related
programs, which is useful in real-time applications. There are two beams
in the gripper, one at the outer end of the gripper while the other is at the
opposite extreme, i.e. inner end. When they break it means that there is
some obstacle between the grippers, and the gripper takes action to close
it. If any beam is broken it is shown as a broken beam in the output JAVA
Frame as in Fig. 8.3. As shown there are eight buttons. When any one of
them is clicked then the client receives the user request. This information
is forwarded to the server where the corresponding subroutine program
runs. When “Grip Open” is pressed, it opens the gripper. If “Grip Close” is
pressed then the gripper will be closed. If “Grip Stop” is pressed, then the
moving gripper will be stopped and the same process is carried out for lift-
ing the gripper. The function of “Ready” keeps the gripper in the ready po-
sition i.e. ready to grab any object laying in front it. The “Store” key keeps
the gripper in store position. The break in the outer beam shown in the Fig.
8.3 is due to the presence of an obstacle between the gripper arms.

9 Program for Sonar Reading Display

9.1 Introduction

Sonar (Sound Navigation and Ranging) is an integral part of any mobile
robot; it helps it to know how far the obstacles are located in different di-
rections. In Pioneer 2DE, there are 16 sonar detectors, which are placed
uniformly around the robot. With the help of these sonars the robot is able
to estimate the distance of the obstacles in every direction and by doing so
the robot can avoid obstacles while wandering or navigating.

A sample client–server program has been developed for this purpose,
where the server program runs on the robot and client program on the cli-
ent. The server program gets the sonar reading from each of the sonar sen-
sors and sends these readings one after another to the client. After receiv-
ing these sonar readings the client displays them within a JAVA frame
graphically, so that all the sonar readings can be simultaneously observed
on the client. This process continues, and changes in the sonar readings are
reflected within the frame shown on the client.

9.2 Flow Chart and Source Code for Sonar Reading
Display on Client

The client and server flow charts used for the sonar display program are il-
lustrated in Figs. 9.1 and 9.2 and their sample programs written in C++ and
Java are shown in Listing 9.1 and Listing 9.2 respectively. The program
output with program log session is depicted in Fig. 9.3.

152 9 Program for Sonar Reading Display

Fig. 9.1. Flow chart of server program

Fig. 9.2. Flow chart of client program

Start

Open the client socket and
connect to the server.

Get the sonar readings
and Update it in the dis-

play at the client.

Is Client Con-
nected

End

Yes

No

Send the acknowledgement
signal..

Start

Open the Server socket and
wait for client to connect.

Get the sonar readings
And

Send them to the client

Is Client Con-
nected

End

Wait for the
Acknowledgement.

Yes

No

9.2 Flow Chart and Source Code for Sonar Reading Display on Client 153

Listing 9.1. Server source code for sonar reading display

// filename : sonar.cpp
#include"Aria.h"
#include<stdlib.h>
#include<string.h>
#include<signal.h>

ArSocket server,client;

// for ctrl+c
void shutdown(int signum)
{
printf("\n Closing the connection");
client.close();
server.close();
Aria::shutdown();
exit(0);
}

main()
{
// for ctrl + C handler
struct sigaction sa;
memset(&sa,0,sizeof(sa));
sa.sa_handler = &shutdown;
sigaction(SIGINT,&sa,NULL);

size_t size;

// scon for serial connection
ArSerialConnection scon;

// the robot object
ArRobot robot;

// sonar is used for getting sonar readings.
ArSonarDevice sonar;

// for storing the sonar readings
int range[16];

// for sending the sonar readings through str.
char str[100];

// Running in a single thread
Aria::init(Aria::SIGHANDLE_THREAD);

154 9 Program for Sonar Reading Display

// opening the robot connection
if(scon.open() != 0)
{
printf("\n Could not open the connection.");
exit(1);
}
else
{
printf("\n Connected to robot through serial port.");
robot.addRangeDevice(&sonar);
robot.setDeviceConnection(&scon);
}

// connecting the robot.
if (!robot.blockingConnect())
{
printf("\n Could not connect to robot");
Aria::shutdown();
exit(1);
}

//opening the server socket.
if(server.open(5015,ArSocket::TCP))
printf("\n Opened the Server Socket.");
else
{
printf("\n Unable to open the Server Socket.");
return 1;
}

// wait for client to join
if(server.accept(&client))
printf("\n Connected to Client.");

// run robot in asynchronous mode.
robot.runAsync(true);

// sonar readings are send here.
while (true)
{
for (int i = 0 ; i < 16 ; i ++)
{
// get the ready / ack signal
size = client.read(str,sizeof(str));
str[size] = '\0';

9.2 Flow Chart and Source Code for Sonar Reading Display on Client 155

// if Disconnect then break the loop and exit.
if(!strcmp(str,"Disconnect"))
{
client.close();
server.close();
Aria::shutdown();
return 0;
}

str[0] = '\0';

// getting the sonar reading
range[i] = robot.getSonarRange(i);
sprintf(str,"%d",range[i]);

// send it to the client
client.write(str,strlen(str));
}
}

client.close();
server.close();
Aria::shutdown();
return 0;
}

Compilation and execution: The following text command is used for
compilation and execution.

g++ -o sonar – I$ARIA/include –L$ARIA/lib -ldl –
pthread –lAria sonar.cpp

Listing 9.2. Client source code for sonar reading display

// filename : Sonar.java
import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.net.*;
import java.awt.event.*;
import java.text.*;
import java.lang.*;
import java.util.*;
public class Sonar extends JFrame

156 9 Program for Sonar Reading Display

{
Container container=null;
boolean flag =true;
Socket socket;
InputStream input; OutputStream output;
JLbl lbl;
double s_r[] = new double[16];

public Sonar(String title)
{
super(title);
container = this.getContentPane();
container.setLayout(null);

// label for connection status
JLabel cLabel = new JLabel("Not Connected");
cLabel.setBounds(180,310,150,30);
container.add(cLabel);
lbl = new JLbl();
lbl.setBounds(0,0,350,350);
container.add(lbl);

// connecting to the server
try
{
socket = new Socket("192.168.0.9",5015);
cLabel.setText("Connected to 192.168.0.9");
}
catch(UnknownHostException e)
{
System.out.println(e);
System.exit(ERROR);
}
catch(IOException e)
{
System.out.println(e);
System.exit(ERROR);
}

// opening the input and output streams of the socket
try
{
output = socket.getOutputStream();
input = socket.getInputStream();
}
catch(IOException e)

9.2 Flow Chart and Source Code for Sonar Reading Display on Client 157

System.out.println(e);
}

addWindowListener(new WindowEventHandler());
setDefaultCloseOpera-
tion(WindowConstants.DISPOSE_ON_CLOSE)
setSize(330,380);
show();

String str; // for taking the input

try
{
while(true)
{
for (int i = 0 ; i < 16 ; i++)
{
if (flag)
{// sending the ack. Signal here
writeString(output,"Hello");
str = getString(input);
s_r[i] = (double)Integer.parseInt(str);
}
}
lbl.repaint();
}
}
catch(IOException e){}
}

// the destructor
void finalise()
{
try
{
socket.close();
}
catch(IOException e)
{
System.out.println(e);
}
}

// the function of obtaining input string from the
socket
private String getString(InputStream in) throws IOEx-
ception

{

158 9 Program for Sonar Reading Display

{
int c, pos =0;
byte buf[]= new byte[1024];
pos = in.read(buf);
if(pos<=0) return null;
String str = new String(buf,0,pos);
return str;
}

// function for writing data to the socket.
public void writeString(OutputStream o,String s) throws
IOException
{
o.write(s.getBytes());
}

// class for implementing window features.
class WindowEventHandler extends WindowAdapter
{
// while closing the clinet window send “DISCONNECT”
signal
public void windowClosing(WindowEvent e)
{
flag = false;
try
{
writeString(output,"Disconnect");
}
catch(IOException exc){}
System.exit(0);
}
}

// the main function
public static void main(String args[])
{
Sonar frame = new Sonar("Sonar");
}

// the label where the graphics i.e. sonar readings
will be displayed
class JLbl extends JLabel
{
public int width = 350,height= 350;
public int cx = 155,cy = 155,d = 14;
int ang[] = {160,140,120,100,80,60,40,20,
 340,320,300,280,260,240,220,200};

9.2 Flow Chart and Source Code for Sonar Reading Display on Client 159

double s_max; double x,y;

public JLbl()
{
s_max = 5000.0;
for (int i = 0 ; i < 16 ; i ++)
s_r[i] = s_max;
}

public void paint(Graphics g)
{
g.setColor(Color.white);
g.fillOval(10,10,290,290); // for drawing the range of
sonars.

// the outer boundary of sonars.
g.setColor(Color.black);
g.drawOval(10,10,290,290);

// the robot at the center
g.setColor(Color.black);
g.drawOval(cx-d/2,cx-d/2,d,d);
g.drawLine(cx,cy,cx,cy-d/2);

// for 16 sonars
for (int i = 0 ; i < 16 ; i++)
{
if (s_r[i] > s_max)
s_r[i] = s_max;

// calculating the x and y coordinates
x = 140*Math.cos(Math.toRadians(ang[i]))*s_r[i]/s_max;
y = 140*Math.sin(Math.toRadians(ang[i]))*s_r[i]/s_max;

if (x > 0) x += d/2;
else x -= d/2;
if (y > 0) y += d/2;
else y -= d/2;

// draw a cross at the location (x,y)
cross(g);
}
}

// for drawing the cross
public void cross(Graphics g)
{

160 9 Program for Sonar Reading Display

int x1,y1;
if (x > 0) x1 = (int)(x+0.5);
else x1 =(int)(x-0.5);
if (y > 0) y1 = (int)(y+0.5);
else y1 =(int)(y-0.5);
g.setColor(Color.blue);
g.drawLine(cx+x1-2,cy-y1-2,cx+x1+2,cy-y1+2);
g.drawLine(cx+x1+2,cy-y1-2,cx+x1-2,cy-y1+2);
}
//function for getting the width of the label
public int getIconWidth(){return width;}
//function for getting the height of the label
public int getIconHeight(){return height;}
}
}

Program log session
Connected to robot through serial port.Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p
Opened the Server Socket.
Connected to Client.
Disconnecting from robot.

9.3 Summary 161

Fig. 9.3. Output of the sonar reading display program

9.3 Summary

In this chapter the program for the sonar reading display has been discussed.
It can be seen from Fig. 9.3, that there are 16 crosses in total in the figure.
Each of these crosses represents a sonar reading. The robot is shown at the
center of the frame. There is an outer circle, which shows the upper limit of
sonar readings. The sonar readings shown in the figure represent the actual
sonar positions of the robot. The label at the bottom right side shows that the
client is connected to the server. This program will be helpful for the devel-
opment of various application programs for mobile robots to avoid obstacle
collision. We will discuss such a program in the next chapter, i.e. wandering
with obstacle avoidance by using the sonar readings.

10 Program for Wandering Within the Workspace

10.1 Introduction

One of the real-time applications of a robot is to make the robot wander
freely without colliding with obstacles. The robot is made to wander freely
around with the help of actions. Here actions are synchronous tasks which
the robot does while executing the program. Actions are added to make the
robot move in “Wander” mode. There are actions like action Avoid-
FrontNear, action AvoidFrontFar, action ConstantVelocity, action
Avoid Bumpers etc., which are available in ARIA. Simply by adding
these actions, the robot runs in wander mode. This is so, because the robot
simultaneously checks for front avoidance distance, side distance, the
bumpers and the other actions, which are being added. So, according to the
actions added the robot could freely move without bumping into anything.
Actions are different from Direct motions, which follow instructions asyn-
chronously. If there is a move command the robot will try to move even if
there is an obstacle, while in actions the robot decides itself about the mo-
tion depending on the run-time conditions.

10.2 Algorithm and Source Code for Wandering Within

The server algorithm implements the actions on the robot when the signal
“Start” comes from the client. The client algorithm takes the instructions
from the user regarding starting/stopping the wander mode. The client and
server flow charts used for wandering in the workspace are illustrated in
the Figs. 10.1 and 10.2 and their sample programs written in C++ and Java
are shown in Listing 10.1 and Listing 10.2 respectively. The program out-
put with program log session is depicted in Fig. 10.3.

the Workspace

164 10 Program for Wandering Within the Workspace

Fig. 10.1. Server flow chart for the wander program

Fig. 10.2. Wander client program’s flow chart

Start

Open the client socket and
connect to the server.

Get the Instruction from

Is Client
Connected

End

Yes

No

Send the instruction and
Get (x,y,th)

Start

Open the Server socket
and wait for client to con-

nect.

Get the instruction X from
the client

End

Yes

NoIf
X = Start

Add all actions
And send (x,y,th)

Remove actions
And Send (x,y,th)

Yes

No

the user.

Is Client
Connected

10.2 Algorithm and Source Code for Wandering Within the Workspace 165

Listing 10.1. Server source code for wander program

// filename : Wander.cpp
#include "Aria.h"
#include <math.h>
#include <string.h>
#include<signal.h>
#include<stdlib.h>
ArSocket server,client;

// for ctrl+c
void shutdown(int signum)
{
printf("\n Closing the connection");
client.close();server.close();
Aria::shutdown();
exit(0);
}
// the main
main()
{
// the ctrl+c handler
struct sigaction sa;
memset(&sa,0,sizeof(sa));
sa.sa_handler = &shutdown;
sigaction(SIGINT,&sa,NULL);

// for serial connection
ArSerialConnection scon;

// for sonar readings sonar device needs to be added
ArSonarDevice sonar;

// the robot object
ArRobot robot;

// the actions
ArActionStallRecover recover;
ArActionBumpers bumpers;
ArActionAvoidFront avoidFrontNear("Avoid Front Near",
275, 0);
ArActionAvoidFront avoidFrontFar;
ArActionConstantVelocity constantVelocity("Constant Ve-
locity", 250);

// run the program in single thread
Aria::init(Aria::SIGHANDLE_THREAD);

166 10 Program for Wandering Within the Workspace

// open the robot connection
if(scon.open() != 0)
{
printf("\n Could not open the connection.");
exit(1);
}
robot.setDeviceConnection(&scon);
robot.addRangeDevice(&sonar);

// connect the robot
if (!robot.blockingConnect())
{
printf("Could not connect to robot... exiting\n");
Aria::shutdown();
return 1;
}
// open the server socket.
if(server.open(4444,ArSocket::TCP))
printf("\n Opened the Server Socket.");
else printf("\n Unable to open the Server Socket.");

// wait for the client to join
if(server.accept(&client))
printf("\n Connected to Client.");

// enable the robot motors.
robot.comInt(ArCommands::ENABLE, 1);
robot.comInt(ArCommands::SOUNDTOG, 0);

// run the robot in asynchronous mode.
robot.runAsync(true);

while(true)
{
char str[20];

// get the instruction fomr the client
int size = client.read(str,sizeof(str));

str[size]='\0';

// if that is start then add actions
if(!strcmp(str,"START"))
{
robot.lock();
robot.clearDirectMotion();

10.2 Algorithm and Source Code for Wandering Within the Workspace 167

robot.addAction(&recover, 100);
robot.addAction(&bumpers, 75);
robot.addAction(&avoidFrontNear, 50);
robot.addAction(&avoidFrontFar, 49);
robot.addAction(&constantVelocity, 25);
robot.unlock();
}

// else remove actions
else if(!strcmp(str,"STOP"))
{
robot.lock();
robot.remAction(&recover);
robot.remAction(&bumpers);
robot.remAction(&avoidFrontNear);
robot.remAction(&avoidFrontFar);
robot.remAction(&constantVelocity);
robot.stop();
robot.unlock();
}
// if exit then exit
else if(!strcmp(str,"EXIT"))
{
robot.remAction(&recover);
robot.remAction(&bumpers);
robot.remAction(&avoidFrontNear);
robot.remAction(&avoidFrontFar);
robot.remAction(&constantVelocity);
client.close();server.close();Aria::shutdown();
break;
}

sprintf(str,"%d|%d|%d|",(int)robot.getX(),
(int)robot.getY(),(int)robot.getTh());

//send the (x,y,th);
client.write(str,strlen(str));
}
return 0;
}

Compilation and execution: The following text command is used for
compilation and execution of the wander server program.

g++ -o –I$ARIA/include -L$ARIA/lib –ldl –pthread –
lAria wander.cpp

168 10 Program for Wandering Within the Workspace

Listing 10.2. Client source code for wander program

filename : Wander.java
import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.net.*;
import java.awt.event.*;
import java.text.*;
import java.lang.*;
import java.util.*;

public class Wander extends JFrame
{
Container container=null;
Socket socket;
InputStream input;
OutputStream output;
JLabel x,y,th;
double x1=0.0,y1=0.0,th1=0.0;
JLbl lbl;

public Wander(String title)
{
super(title);
container = this.getContentPane();
container.setLayout(null);

// label for connection status
JLabel cLabel = new JLabel("Not Connected");
cLabel.setBounds(200,280,150,30);
container.add(cLabel);

// labels for (X,Y,theta)
x = new JLabel("X :: 0.0");
y = new JLabel("Y :: 0.0");
th = new JLabel("Th :: 0.0");
x.setBounds(10,250,100,15);
y.setBounds(10,265,100,15);
th.setBounds(10,280,50,15);
container.add(x);
container.add(y);
container.add(th);

// the label where the simulator is displayed
lbl = new JLbl();
lbl.setBounds(0,0,399,170);
container.add(lbl);

10.2 Algorithm and Source Code for Wandering Within the Workspace 169

// the socket is opened here.
try
{
socket = new Socket("192.168.0.9",5007);
cLabel.setText("Connected to 192.168.0.9");
}
catch(UnknownHostException e)
{
System.out.println(e);
System.exit(ERROR);
}
catch(IOException e)
{
System.out.println(e);
System.exit(ERROR);
}
// get the input and output streams.
try
{
output = socket.getOutputStream();
input = socket.getInputStream();
}
catch(IOException e)
{
System.out.println(e);
}
// add the window features.
addWindowListener(new WindowEventHandler());
setDefaultCloseOpera-
tion(WindowConstants.DISPOSE_ON_CLOSE)
setSize(400,350);
show();

// three variables for (x,y,th)
double z[] = new double[3];
String str;

try
{
while(true)
{
// getting the (x,y.th) here
for (int i = 0 ; i < 3 ; i++)
{
writeString(output,"Hello");

170 10 Program for Wandering Within the Workspace

str = getString(input);
z[i] = (double)Integer.parseInt(str);
}

// using an appropriate scale
x1 = z[0]/100;
y1 = z[1]/100;
th1 = z[2]/100;

x.setText("X :: "+x1);
y.setText("Y :: "+y1);
th.setText("Th :: "+th1);
lbl.setValues(x1,y1,th1);
// when values change repaint the label.
lbl.repaint();
}
}
catch(IOException err){}
}
// destructor
void finalise()
{
try
{
socket.close();
}
catch(IOException e)
{
System.out.println(e);
}
}
// function for getting the string/data from socket
private String getString(InputStream in) throws IOEx-
ception
{
int c; int pos =0;
byte buf[]= new byte[1024];
pos = in.read(buf);
if(pos<=0) return null;
String str = new String(buf,0,pos);
return str;
}

// function to write data to the socket.
public void writeString(OutputStream o,String s) throws
IOException
{

10.2 Algorithm and Source Code for Wandering Within the Workspace 171

o.write(s.getBytes());
}

// class to implement the window functions.
class WindowEventHandler extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
try
{
writeString(output,"Disconnect");
}
catch(IOException exc){}
System.exit(0);
}
}

// the main function.
public static void main(String args[])
{
Wander frame = new Wander("Wander");
}

// the lablel where the simulator is displayed
class JLbl extends JLabel
{
public int width = 380,height= 200;
public int x=197,y=97,d=14,th=0;
public int cx=x,cy=y;

public void TLbl()
{
}

// the simulator is displayed using paint(g)
public void paint(Graphics g)
{
// the outer boundary of the simulator.
g.setColor(Color.white);
g.fillRect(10,10,370,170);
g.setColor(Color.black);
g.drawRect(10,10,370,159);

// the robot
g.drawOval(cx-d/2,cy-d/2,d,d);
int x1 = (int)(d*Math.cos(Math.toRadians(th))/2);
int y1 = (int)(d*Math.sin(Math.toRadians(th))/2);

172 10 Program for Wandering Within the Workspace

g.drawLine(cx,cy,cx+x1,cy-y1);
}
// function to return width.
public int getIconWidth(){return width;}

// function to return height.
public int getIconHeight(){return height;}

//function to set values.
public void setValues(double x1,double y1,double th1)
{
x1 %= 8;y1 %= 3;
cx = x + (int)(x1*20);
cy = y - (int)(y1*20);
th = (int)th1;
}
}
}

Program log session

Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p

Opened the Server Socket.
Connected to Client.
Disconnecting from robot.

10.3 Summary 173

Fig. 10.3. Output of the wander program

10.3 Summary

As shown in Fig. 10.3, the client interface has two buttons, i.e. “Start” and
“Stop”. When one clicks the “Start” button then the robot starts running in
“Wander” mode and when the “stop” button is clicked the robot stops
wandering. The current position and heading (Th) in the figure are indi-
cated in the bottom left corner of the JAVA frame and at the right-hand
corner there is a label showing that the robot is connected to the client.

11 Program for Tele-operation

11.1 Introduction

Tele-operation is used for operating the robot from a distance. A common
example is a pick and place application, where the robot is controlled by
the master (user) from a control room. Here a sample client–server pro-
gram is developed, which controls the robot from the client. In the client
the motion control is done by using the keys or the buttons in the menu,
which is displayed at the client in a simulator. The simulator has the cur-
rent robot location and the user at the client is able to know exactly where
the robot is, along with its heading.

11.2 Algorithm and Source Code for Tele-operation

The server algorithm is meant for collecting the commands regarding mo-
tion from the client and executing them. The client algorithm gives the in-
structions to get these commands from the user. The client and server flow
charts used for the program for tele-operation are illustrated in Figs. 11.1
and 11.2 and their sample programs written in C++ and Java are shown in
Listings 11.1 and 11.2 respectively. The program output with program log
session is depicted in Fig. 11.3.

176 11 Program for Tele-operation

Fig. 11.1. Server flow chart for the program for tele-operation

Fig. 11.2. Client flow chart for the program for tele-operation

Start

Open the client socket
and connect to the

server.

Get the Instruction from
the user..

Is Client
Connected

End

Yes

No

Send the instruction and
Get (x,y,th)

Start

Open the Server socket and
wait for client to connect.

Get the instruction X from
the client

End

Execute the instruction
and send(x,y,th)

Is Client
Connected

Yes

No

11.2 Algorithm and Source Code for Tele-operation 177

Listing 11.1. Server source code for tele-operation program

// filename : teleop.cpp
#include"Aria.h"
main()
{
// for socket
ArSocket server,client;

// size of read data
size_t size;

// the robot instance
ArRobot robot;

// the serial connection
ArSerialConnection scon;

char str[100];

// for forward step / Back move / Turn
int fStep = 100;int bStep = 100;
int lHeading = 10;int rHeading = 10;
int head=0;

// run program in single thread
Aria::init(Aria::SIGHANDLE_THREAD);

// open the connection
if(scon.open() != 0)
{
printf("\n Could not open the connection.");
exit(1);
}

// set the serial connection
robot.setDeviceConnection(&scon);

// connect the robot
if(!robot.blockingConnect())
printf("\n Could not connect to the robot");

// the server socket
if(server.open(5000,ArSocket::TCP))
printf("\n Opened the Server Socket.");
else

178 11 Program for Tele-operation

{
printf("\n Unable to open the Server Socket.");
Aria::shutdown();
return 1;
}

// wait for the client to join
if(server.accept(&client))
printf("\n Connected to Client.");

robot.runAsync(true);

// enable the motors
robot.enableMotors();

while(true)
{
// get the instruction
size = client.read(str,sizeof(str));

// if client disconnected then break loop
if (size < 0) break;

if (size > 0)
{
str[size] = '\0';
printf("\n Client said :: %s %d
%d",str,strlen(str),size);

// for forward instruction
if (!strcmp(str,"Forward"))
{
robot.lock();
robot.move(fStep);
robot.unlock();
while(true)
{
robot.lock();
if(robot.isMoveDone())
{
robot.unlock();
break;
}
robot.unlock();
ArUtil::sleep(50);
}
printf("\n %lf %lf %lf",robot.getX(),

11.2 Algorithm and Source Code for Tele-operation 179

robot.getY(),robot.getTh());
}

// for backward instruction
if (!strcmp(str,"Backward"))
{
robot.lock();
robot.move(-bStep);
robot.unlock();
while(true)
{
robot.lock();
if(robot.isMoveDone())
{
robot.unlock();
break;
}
robot.unlock();
ArUtil::sleep(50);
}
}

// for left instruction
if (!strcmp(str,"Left"))
{
robot.lock();
head += lHeading;
head %= 360;
robot.setHeading(head);
robot.unlock();

while(true)
{
robot.lock();
if(robot.isHeadingDone())
{
robot.unlock();
break;
}
robot.unlock();
ArUtil::sleep(50);
}
}

// for right instruction
if (!strcmp(str,"Right"))
{

180 11 Program for Tele-operation

robot.lock();
head -= rHeading;
head %= 360;
robot.setHeading(head);
robot.unlock();

while(true)
{
robot.lock();
if(robot.isHeadingDone())
{
robot.unlock();
break;
}
robot.unlock();
ArUtil::sleep(50);
}
}

// for Disconnect instruction
if(!strcmp(str,"Disconnect"))
{
printf("Disconnecting from the client.");
break;
}
}
}

// closing and exiting
printf("\n Closing the server");
client.close();
server.close();
Aria::shutdown();
return 0;
}

Compilation and execution: The following text command is used for
compilation and execution of Tele-operation program

g++ -o teleop –I$ARIA/include –L$ARIA/bin –ldl –pthread
–lAria teleop.cpp

11.2 Algorithm and Source Code for Tele-operation 181

// filename : Teleop.java
import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.net.*;
import java.awt.event.*;
import java.text.*;
import java.lang.*;
import java.util.*;

public class Teleop extends JFrame implements Ac-
tionListener
{
Container container=null;
Socket socket;
InputStream input;
OutputStream output;
String str[] = {"Move Forward","Move Back","Move
Left","Move Right"};
char mnemonics[] = {'F','B','L','R'};
int bWidth = 120; // button width
int bHeight = 25; // button height
int loc [][] =
{{70,220},{210,220},{140,190},{140,250}};
JLabel x,y,th;
int th1=0;
double x1=0.0,y1=0.0;
JLbl lbl;

public Teleop(String title)
{
super(title);
container = this.getContentPane();
container.setLayout(null);

// for arrow keys
addKeyListener(new KeyAdapter()
{
public void keyPressed(KeyEvent e)
{
double ang=Math.toRadians((double)th1);
try{
if (e.getKeyCode()==e.VK_UP)
{
writeString(output,"Forward");
x1 += 0.1*Math.cos(ang);
y1 += 0.1*Math.sin(ang);

Listing 11.2. Client source code for tele-operation program.

182 11 Program for Tele-operation

}
if (e.getKeyCode()==e.VK_DOWN)
{
x1 -= 0.1*Math.cos(ang);
y1 -= 0.1*Math.sin(ang);
writeString(output,"Backward");
}
if (e.getKeyCode()==e.VK_LEFT)
{
writeString(output,"Left");
th1 += 10;
if (th1 == 360)
th1 = 0;
}
if (e.getKeyCode()==e.VK_RIGHT)
{
th1 -= 10;
if (th1 < 0)
th1 += 360;
writeString(output,"Right");
}
x1 = (int)(x1*100);
y1 = (int)(y1*100);
x1 = x1/100;
y1 = y1/100;
x.setText("X :: "+x1);
y.setText("Y :: "+y1);
th.setText("Th :: "+(th1));
lbl.setValues(x1,y1,th1);
lbl.repaint();
}
catch(IOException err) {}
}});

container.requestFocus();

// add all the buttons
for (int i = 0 ; i < str.length ; i++)
{
JButton b = new JButton(str[i]);
b.setBounds(loc[i][0],loc[i][1],bWidth,bHeight);
b.setMnemonic(mnemonics[i]);
container.add(b);
b.addActionListener(this);
}

11.2 Algorithm and Source Code for Tele-operation 183

JLabel cLabel = new JLabel("Not Connected");
cLabel.setBounds(200,280,150,30);
container.add(cLabel);

// for x,y,th
x = new JLabel("X :: 0.0");
y = new JLabel("Y :: 0.0");
th = new JLabel("Th :: 0");
x.setBounds(10,250,100,15);
y.setBounds(10,265,100,15);
th.setBounds(10,280,50,15);
container.add(x);
container.add(y);
container.add(th);

// the simulator
lbl = new JLbl();
lbl.setBounds(0,0,399,170);
container.add(lbl);

// for opening the client socket
try
{
socket = new Socket("192.168.0.9",5000);
cLabel.setText("Connected to 192.168.0.9");
}
catch(UnknownHostException e)
{
System.out.println(e);
System.exit(ERROR);
}
catch(IOException e)
{
System.out.println(e);
System.exit(ERROR);
}

//opening the ip/op streams
try
{
output = socket.getOutputStream();
input = socket.getInputStream();
}
catch(IOException e)
{
System.out.println(e);
}

// add the label for connection

184 11 Program for Tele-operation

// adding the window features
addWindowListener(new WindowEventHandler());
setDefaultCloseOpera-
tion(WindowConstants.DISPOSE_ON_CLOSE);
setSize(400,350);
show();
}

// for action performed
public void actionPerformed(ActionEvent ae)
{
String s = ae.getActionCommand();
double tx,ty,ang=Math.toRadians((double)th1);
try{

if (s.equals(str[0]))
{
writeString(output,"Forward");
x1 += 0.1*Math.cos(ang);
y1 += 0.1*Math.sin(ang);
}
if (s.equals(str[1]))
{
x1 -= 0.1*Math.cos(ang);
y1 -= 0.1*Math.sin(ang);
writeString(output,"Backward");
}
if (s.equals(str[2]))
{
writeString(output,"Left");
th1 += 10;
if (th1 == 360)
th1 = 0;
}
if (s.equals(str[3]))
{
th1 -= 10;
if (th1 < 0)
 th1 += 360;
writeString(output,"Right");
}
x1 = (int)(x1*100);
y1 = (int)(y1*100);
x1 = x1/100;
y1 = y1/100;
x.setText("X :: "+x1);

11.2 Algorithm and Source Code for Tele-operation 185

y.setText("Y :: "+y1);
th.setText("Th :: "+(th1));
lbl.setValues(x1,y1,th1);
lbl.repaint();
}catch(IOException e) {}
}

// the destructor function
void finalise()
{
try
{
socket.close();
}
catch(IOException e)
{
System.out.println(e);
}
}

// for getting the data from the socket
private String getString(InputStream in) throws IOEx-
ception
{
int c;
int pos =0;
byte buf[]= new byte[1024];

pos = in.read(buf);
if(pos<=0) return null;
String str = new String(buf,0,pos);
return str;
}

// for writing data into socket.
public void writeString(OutputStream o,String s) throws
IOException
{
o.write(s.getBytes());
}

// for window features
class WindowEventHandler extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
try

186 11 Program for Tele-operation

{
writeString(output,"Disconnect");
}
catch(IOException exc){}
System.exit(0);
}
}

// the main function
public static void main(String args[])
{
Teleop frame = new Teleop("Tele-operation");
}

// the simulator
class JLbl extends JLabel
{
public int width = 380,height= 200;
public int x=197,y=97,d=14,th=0;
public int cx=x,cy=y;

public void TLbl()
{
}
public void paint(Graphics g)
{
// the simulator region
g.setColor(Color.white);
g.fillRect(10,10,370,170);
g.setColor(Color.black);
g.drawRect(10,10,370,159);

//the robot at cx,cy
g.drawOval(cx-d/2,cy-d/2,d,d);
int x1 = (int)(d*Math.cos(Math.toRadians(th))/2);
int y1 = (int)(d*Math.sin(Math.toRadians(th))/2);
g.drawLine(cx,cy,cx+x1,cy-y1);
}

//get the Icon width
public int getIconWidth(){return width;}

//get the Icon height
public int getIconHeight(){return height;}

11.2 Algorithm and Source Code for Tele-operation 187

public void setValues(double x1,double y1,int th1)
{
x1 %= 8;
y1 %= 3;
cx = x + (int)(x1*20);
cy = y - (int)(y1*20);
th = th1;
}
}
}

Program log session

Syncing 0
Attempting to close previous connection.
Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p

Opened the Server Socket.
Connected to Client.
Client said :: Left 4 4
Client said :: Forward 7 7
64.923000 9.690000 9.228631
Client said :: Forward 7 7
192.831000 32.946000 10.722791
Client said :: Forward 7 7
301.359000 51.357000 8.613389
Client said :: Forward 7 7
407.949000 68.799000 10.195440
Client said :: Right 5 5
Client said :: Backward 8 8
Client said :: Right 5 5
Client said :: Disconnect 10 10
Disconnecting from the client.
Closing the server
Disconnecting from robot.

// set the values.

188 11 Program for Tele-operation

Fig. 11.3. Output of tele-operation program

11.3 Summary

It can be seen from Fig. 11.3 that the simulator consists of four buttons.
One can use these four buttons or the mnemonics (Alt + understrike letter).
With each action performed the robot in the simulator also moves accord-
ingly. When it crosses the boundary it is again brought back into the region
of the simulator. The current position is given by (X, Y) and the direction
by theta (Th). Using this program one can run the robot safely from a dis-
tance. Here “Direct Motion” commands are used for the tele-operation, but
instead “Actions” may be used.

12 A Complete Program for Autonomous
Navigation

12.1 Introduction

This chapter discusses the design of a complete navigator program using a
client–server architecture for the mobile robot Pioneer 2-DX in a multi-
platform system, where the server works on Linux and clients run on the
Windows environment. Robot control is achieved through the client–server
architecture as shown in Fig. 12.1. The image server program is written in
C++ [Swan, 2000; Klander, 2000], and runs on the server for sending the
images taken by the framegrabber to the client; and the robot motion
server program executes the motion commands on the server and sends
low-level commands to the motors. Secondly, the navigator client program
is elaborated, which is developed using Java. The program directory layout
in the robot’s onboard computer is as follows.

/home/

motion/
Makefile the description file for make

 Server the motion server executable
 Socket.h header file for Socket class

Socket.cpp Socket class definition file
Socket.o object file generated after compilation
ServerSocket.h header file for ServerSocket
ServerSocket.cpp ServerSocket class definition file
ServerSocket.o object file generated after compilation
SocketException.h header file for socket exceptions

 simple_server_main.cpp source code for the motion server
 simple_server_main.o object file generated after compilation
 vision/
 trialserver Black & white and Color image server
 trialserver.cpp image server source file

190 12 A Complete Program for Autonomous Navigation

 trialserver.o object file generated after compilation
 image RLE encoded image server for Navigator

imageserver.cpp RLE encoded image server code
imageserver.o object file generated after compilation

Fig. 12.1. Client–server architecture for robot navigation and exploration

12.2 The ImageServer Program

The image server program opens a listening socket on port 4325 of the ro-
bot’s onboard computer. On receiving a request from the navigator client,
the program opens the vision system for continuous video and by using a
simple run-length encoding algorithm [Jahne, 1997] compresses the black
and white image from the left camera and transfers the image data over the
network to the client computer. In the navigator client the image is dis-

 - 8 bit pixel value stream from server to client
 - Character based command word stream from client to server and robot
state variables from server to client

CLIENT

SERVER

Image Server
Program

Motion Server
Program

Camera Map Robot

NAVIGATOR

12.2 The ImageServer Program 191

played in the upper left corner of the window. The incoming images from
the server are continuously displayed. The program encodes the black and
white image taken by the framegrabber of the server into the run-length
encoded image and transmits over the network using the socket. This pro-
gram resides in the /home/vision folder of the robot’s computer. The
source code is available in Listing 12.1 at the website of the book. Telnet
session after execution is given below:

Listing of a Telnet session
Red Hat Linux Release 7.1 (Seawolf)
Kernel 2.4.2-2.VSBC6 on an i586
login: guest
Last login: Sun Apr 21 15:45:54 from 192.168.0.3
[~]$ su
[/home/ActivMedia]# cd ../vision
[/home/vision]# image
IEEE 1394 interface open request
1 card(s) found, 2 node(s)
Checking card 0, node 0
Vitana api addr: 78080600
Vendor length is 10
Vendor is: VITANA
Model length is 10
Model is: PixeLINK(tm)
Camera found at node 0 0: VITANA PixeLINK(tm)
Camera ISO bandwidth needed: A10
Max_Image_Size_Inq: 05080408
Unit_Size_Inq: 00080008 (0)
Image_Size_Inq: 05000400 (0)
Frame_Rate_min: 0000000E (0)
Frame_Rate_max: 000000A0 (0)
Frame_Rate_def: 00000011 (0)
Flags: 00000000 (0)
PCS2112 ver 0x30
Imager reset starting...
Imager reset succeeded
Imager ready.
Camera ISO speed set to 400 Mb/sec
Camera ISO parameters: 2000000
Opened frame grabber.
Size: 320/1280 240/960
Image server listening on 0.0.0.0:4325

192 12 A Complete Program for Autonomous Navigation

12.3 The MotionServer Program

This program controls the robot’s movements, obstacle detection and grip-
per functions. The socket communication in this program is encapsulated
in Socket and SocketServer C++ classes. These classes implement
methods for handling low-level LINUX socket communication [Mitchell,
2001]. The Socket class implements all the basic socket operations (like
bind, listen, accept, connect, write and recv) and the SocketServer class
adds the possibility of exceptions that may occur during the lifecycle of a
socket. In this section, the program opens a connection to the robot or the
robot simulator and then waits on port 4040 for a connection from the
Navigator client. On negotiating a successful connection with the naviga-
tor client, the program starts an infinite loop in which it sends the client in-
formation about the robot’s state, such as the robot’s position, heading,
translational and rotational velocity and battery voltage. The socket han-
dling the communication is set as non-blocking so that a read function on
the socket does not block the program. This is done because the data or
command sent from the client to the motion server is of an asynchronous
nature. And if the program is blocked during the read operation, the client
will not be provided with the robot’s state information. The client program
sends specific commands in the form of special strings. The program then
interprets the commands and if a match is found the associated function is
executed. The list of valid commands is given in Table 12.1. The listing of
various program codes for the robot motion server is available in Listing
12.2 at the website of the book. The Telnet session is given below.

Table 12.1. Lists of commands for robot motion

HEAD The client sends a heading value followed by this command. The mo-
tion server on receiving the command sets the robot’s heading ac-
cordingly.

MOVE The client specifies the distance to be moved followed by this com-
mand. The motion server on receiving the command issues a move
command to the robot for the given distance.

HALT This brings the robot to a standstill, discarding all motion commands
already executing.

UMOV Moves the gripper lift Up.

DMOV Moves the gripper lift Down.

GOPN Opens the gripper paddle.

GCLS Closes the gripper paddle.

STOP Stops the gripper.

12.3 The MotionServer Program 193

SOFF Turns off BOTSPEAK’s commentary.

SONN Turns on BOTSPEAK’s commentary.

FRWD Moves the robot forward by 15 cm.

MBCK Moves the robot back by 10 cm.

TLFT Turns the robot left by 10 degrees.

TRGT Turns the robot right by 10 degrees.

WNDR Starts wander action on the robot.

SWND Stops wander action if already running.

PFDR Starts path-finder action on robot.

SPFR Stops path-finder action on robot, if running.

OBTR Starts object-tracking action on robot.

SOTR Stops object tracking action on robot, if running.

A Telnet session for running the motion server
Red Hat Linux release 7.1 (Seawolf)
Kernel 2.4.2-2.VSBC6 on an i586
login: guest
Last login: Sun Apr 21 15:47:46 from 192.168.0.3
aumix: error opening mixer
aumix: error opening mixer
[~]$ su
[/home/ActivMedia]# cd ../motion
[/home/motion]# nohup startx &
[1] 841
[/home/motion]# nohup: appending output to `nohup.out'

[/home/motion]# export DISPLAY=localhost:0
[/home/motion]# xhost +localhost
localhost being added to access control list
[/home/motion]# server
running....
Botspeak server: ret=0 from eciSetParam
Botspeak server: ConnectToEngine invoked
 IBM ViaVoice Speech Recognizer

(C) Copyright International Business Machines Corp.
1991-1999.
All Rights Reserved
Licensed Materials - Property of IBM

194 12 A Complete Program for Autonomous Navigation

U.S. Government Users. RESTRICTED RIGHTS –
Use, Duplication, or Disclosure restricted by GSA ADP
Schedule Contract with IBM Corporation.

Recognizer: initializing wsi ... pap ... dec ...
ready.

Botspeak server: ConnectToEngine: SmConnect() rc = 0
Botspeak server: Initializing ILU
Botspeak server: Server instance published.
Botspeak server: Its SBH is
"ilusbh:BotSpeak/iface_Obj;ilut-0X1.FFA14080F4B60P+0
jCJjhsJx98pxHkmmo7-
5CEPQUOh;sunrpc@sunrpcrm=tcp_192.168.0.9_1027".
Botspeak server: Connected to speech engine.
BotSpeak: No callback defined for SmNfocusGrantedCall-
back
MicOffCB: rc = 5
Syncing 0
Syncing 1
Syncing 2

Connected to robot.

Name: Burla_1473
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p
Gripper: queried, using General IO.

The BOTSPEAK server requires that X-Windows be running on the client.
The nohup command is used to start X-Windows (startx) so that even
after the completion of the Telnet session the child, i.e. the X-server, is not
terminated. After starting the X-server, the display variable is exported
such that using xhost the X-server on the robot’s computer can host the
display that the BOTSPEAK server intends to open in the Telnet session.

12.4 The Navigator Client Program 195

a different task. The program is multi threaded, and spawns a thread for re-
ceiving the robot’s state information and reflecting it in the client display.
The entire program has been broken up into the following classes.

• Client: This handles socket communication with the motion server and

the image server.

• Camera: This handles the reception and display of the run-length en-
coded image received from the image server.

• Map: This displays the robot’s position and range sensor information in
2D Cartesian coordinate display.

• Robot: This encapsulates the robot properties for display in the above
coordinate system.

• Navigator: This integrates all the classes and implements the user inter-
face with the program. It also receives the robot’s state information on a
separate thread.

The navigator is the main class and brings together all the functionalities
of the classes. This program spawns two threads one to receive the image
from the image server and the other for receiving the state information of
the robot. On the main thread the program listens to user events and ac-
cordingly commands the motion server. The various program codes of the
navigator is available in Listing 12.3 of the website of the book. The navi-
gator programs can be executed from the command prompt by issuing the
following commands:

C:\> cd Navigator
C:\Navigator\> set PATH=%PATH%;C:\jdk1.4\bin
C:\Navigator\> java Navigator

12.4 The Navigator Client Program

This program is written in Java, because it supports a networking capabil-
ity and provides built-in classes for window-based display [Java, 2002].
The program has been broken up into several class files each for handling

196 12 A Complete Program for Autonomous Navigation

Fig. 12.2. The robot navigator program window

The navigator program must be launched after starting both the image
server and the motion server programs. These server programs can be
launched from separate Telnet sessions with the robot’s onboard computer.
The procedural details have been discussed with the individual programs.
On launching the navigator client program, connection is established with
the image server and the motion server. The front end of the Navigator
Client program is shown in Fig. 12.2. The upper left sub-window gives a
continuous display of the run-length encoded black and white image re-
ceived from the left camera of the stereo rig. The right half of the screen
displays the bird’s-eye view of the robot along with the sonar sensor read-
ings as a red dot around the robot. Robot control functions are available in
the left lower panel. The Open, Close, Up, Down, Ready and Stop button
in the first row control the gripper of the robot. In navigator, the robot can
be operated in three different modes and these are available in the Navi-
gate drop down menu.

12.4 The Navigator Client Program 197

Fig. 12.3. Bird’s-eye view of the robot’s surrounding

• Tele-operate: This is the default mode where the keyboard keys are
used to control the robot. To activate this mode one must pay attention
to the right display sub-window. This is achieved by a mouse click in
the subwindow. The following keys are used to operate the robot:

• Wander: This activates the wander activity in the robot. The Go button
is used to launch this mode and the Halt button stops it. In this mode the
robot autonomously wanders around avoiding obstacles on its own and
sends the sonar readings and video image from the left camera. This is
used to take the sensory readings of the robot.

Up arrow (↑) move the robot forward

Down arrow (↓) move the robot back

Left arrow (←) turn the robot left

Right arrow (→) turn the robot right

“o” open gripper paddles

“c” close gripper paddles

“u” lift up the gripper paddles

“d” move down the gripper paddles

198 12 A Complete Program for Autonomous Navigation

• Mapper: In this mode a path for the robot is specified by clicking at
points, that the robot is supposed traverse. A line on the display indi-
cates the projected path of the robot. The path can be closed at the origin
of the robot by a right click. The Go button starts the procedure and the
robot starts tracing the path gives by the yellow lines. On reaching the
destination the robot stops. The Halt button may be used to terminate
the procedure before completion. If the robot finds an unavoidable ob-
stacle it terminates the procedure.

The text box named Speak activates the robot’s speech-synthesis system.
The text in the text box will be read aloud by the robot’s BOTSPEAK sys-
tem using the IBM VIAVOICE speech engine. The Commentary checkbox
enables or disables online commentary of the actions taken by the robot. If
the “ready” button is activated, the robot can grab and lift an object, when-
ever it finds an object between its open paddles. On the control panel,
lower left side, one can find state variable indicators such as position (x,
y), heading, velocity (translational and rotational) and battery voltage. A
bird’s-eye view of the robot’s surroundings is shown in Fig. 12.3 and the
image sequence is shown in Fig. 12.4.

Image Sequence 1

Image Sequence 2

Image Sequence 3

Image Sequence 4

12.5 Summary 199

Image Sequence 5

Image Sequence 6

Image Sequence 7

Image Sequence 8

Fig. 12.4. Sequence of images of robot navigation

12.5 Summary

The chapter describes the development of a complete client–server archi-
tecture for the mobile robot in a multiplatform network for the navigation
and exploration of Pioneer 2-DX. It is useful to add various modules in
the same program and test their algorithms, with minimum changes,
which releases the burden of designing the front end of the client–server
architecture.

13 Imaging Geometry

13.1 Introduction

Visual perception is undoubtedly one of the most precious and trustwor-
thy sense organs of human beings for understanding the environment. In
the recent past, researchers have added this invaluable faculty to ma-
chines in addition to their intelligence. Machine vision refers to the view-
ing or sensing of the environment by the computer, allowing it to synthe-
size information from the imagery of the concerned scene, analyze it, and
finally carry out various interpretations or make decisions. Computer vi-
sion employs 3D imaging techniques, which differ remarkably from clas-
sical imaging in such a way that it recovers the depth information, i.e. the
third dimension, by various techniques. In fact, it is a formidable task to
emulate the human visual system in machines, since it requires a detail
understanding of the imaging process. It finds extensive application in
navigation and path planning of mobile robots, tracking and targeting in
air missiles and defense systems, the manufacturing environment, dis-
posal of toxic waste in nuclear power plants, etc. For accomplishing this
task the robot has to be equipped with cameras to obtain visual informa-
tion about its neighborhood.

13.2 Necessity for 3D Reconstruction

While programming the mobile robot to carry out navigational tasks
autonomously, it is always necessary to explore the surroundings. Re-
cently the problem of exploring an unknown environment has received
considerable attention from the computer science and AI community. Be-
fore exploration, it is assumed that the environment is populated with a po-
lygonal obstacle and the robot has to determine its position with respect to
a global frame of reference. In practice, it is quite difficult to estimate pre-
cisely the position of a mobile robot with respect to an arbitrary frame of

202 13 Imaging Geometry

reference. Therefore, in robotic systems an odometry system is used to de-
termine the robot’s global position but this suffers from the problem of
cumulative errors as the robot moves further from its starting position. In
order to avoid the cumulative errors, many localized systems require in-
stalling a set of beacons at known locations in the robot’s workspace. But
this is not viable for robots working in indoor environments. To do some
complicated task, such as a pick and placement job in a flexible manufac-
turing environment, searching for leaking barrels of toxic waste in nuclear
plants, surface moving where the surface is not planar and familiar, vision-
based 3D exploration is necessary. However 3D scene recovery from 2D
planar images remains a challenging task; even today, it is overwhelmed
with problems.

13.3 Building Perception

Perception, as discussed in Chap. 1, constructs higher-level knowledge
from relatively lower level data or knowledge. Generally the noise-free
information is stored in LTM by the state of acquisition. The state of
perception employs reasoning tools on the information recorded in
LTM and thus derives new rules for subsequent planning and coordina-
tion problems. A mobile robot constructs its surrounding map by sens-
ing information around it and preprocessing that information at the
state of acquisition. In a 2D planning problem, the boundaries of the
obstacles are generally sensed by ultrasonic sensors or laser range-
finders. It is always assumed that the top of the obstacles is at a level
higher than the mounting point of the sensors. A 3D planning problem,
on the other hand, requires keeping track of the obstacle surfaces and
their heights as well. To extend the 3D information, generally addi-
tional cameras are employed. These cameras are mounted on a pan-tilt
platform, which is fixed with the mobile robot. When more than one
camera are used for determining the third dimension of the obstacles, it
is called stereo vision.

For constructing a 2D world map, the robot has to move around each
obstacle. Starting from a given location the robot moves around each ob-
stacle, until all obstacles are visited. A two-dimensional world map for the
robot is then built up with the visited obstacles. If the sensory information
recorded in the Long Term Memory (LTM) is not completely free from
noise, then noise has to be eliminated first.

13.3 Building Perception 203

13.3.1 Problems of Understanding 3D Objects from 2D Imagery

One of the limitations of machine vision is that the imaging process is in-
terpreted from the information on a 2D image relating to the 3D world. But
this can be modeled with the knowledge of the physical process of image
formation, i.e. how the 3D world scene is projected onto the image plane
of the camera giving rise to the 2D imagery. This basically constitutes the
basis of perspective projection, which will be covered later in this chapter.
It is not possible to recover the 3D spatial geometry from a single image.
However if we have multiple images of the scene at hand, taken from dif-
ferent viewing angles and positions, then it is possible to extract the 3D
geometric information by a combination of these images, which is known
as stereo-vision.

The camera projects the 3D world onto its image plane. The image
formed in the image plane of the camera is essentially 2D in nature. As
mentioned earlier, it is necessary to have at least two 2D images to inter-
pret the 3D information contained in them. But another difficulty comes in
between in merging the two images as there may be many uncertainties in-
volved in this imaging. The first one is the uncertainty regarding the posi-
tion and orientation of the various geometrical primitives in the image
planes, which give rise to uncertainty in estimation of the 3D features.
Secondly, uncertainty in camera parameters such as focal length and ran-
dom measurement errors also adds uncertainty in the measurement proc-
ess. Little relevant work has been reported in the area of 3D exploration of
the environment or 3D object reconstruction. Reconstruction of 3D fea-
tures by structured light and least squares estimation techniques have been
explained in by Haralick and Shapiro [Haralick, 1993]. Asada [Asada,
1990] has fused sensory/camera images and a sonar range scanner for re-
construction of a world map.

13.3.2 Process of 3D Reconstruction

The process of 3D reconstruction starting from the raw image received
through the camera is shown by the block diagram Fig. 13.1. The basic
tasks can be divided into two steps:

1. To extract meaningful affine geometric information about the environ-

ment from the raw image received through the camera(s) and model the
uncertainty in the process of measurement.

204 13 Imaging Geometry

Fig. 13.1. Schematic block diagram of the whole process

2. To fuse the local representation into a global representation and model
the uncertainty of fusion as well as the displacement of the robot.

After the geometric primitives are obtained, the local primitives are to be
fused to obtain a global 3D reconstruction of the scene/object, which is
represented in the block diagram in Fig. 13.2. Here the objective is to
eliminate uncertainties resulting from the measuring process, first in the
process of extraction of 2D image features and secondly in the 3D recon-
struction process, using a Kalman filter.

Fig. 13.2. Block diagram for estimation of global 3D information

Construction of local 3D Parameters using
Perspective matrix of the Camera

Fusion of local representation into global rep-
resentation

Discovery of geometrical relations between es-
timated geometrical primitives/parameters

Discovery of semantic properties between dif-
ferent groups of geometric entities

Reconstruction of 3D environment

Image Data received through Camera

Local 3D geometric primitives

Matching the geometric primitives of
multiple cameras

Updating the geometric primitive list

Global 3D geometric entities

13.4 Imaging Geometry 205

13.4 Imaging Geometry

The process of 3D imaging involves capturing the image in the 3D world.
The primary task is to develop an imaging system that could emulate the
human visual process. Let us discuss how to recover 3D information from
multiple 2D images obtained from cameras at different viewing positions.
3D imaging can be classified into (i) planar imaging, where a plane is im-
aged; (ii) surface imaging, which involves surfaces, and (iii) imaging 3D
objects, which deals with 3D objects. Planar imaging is the fundamental
one, which is available in almost all image processing books, and surface
imaging, which deals with the analysis of the surface of any non-planar ob-
ject, will be covered in a separate chapter in this book.

13.4.1 Image Formation

Energy from the 3D world is converted into two-dimensional entities
called images by imaging systems such as a camera or electro-optical
sensors. Once the image is acquired, the 2D images are spatially sampled
and quantized after which the digital image has been digitized both in
spatial coordinates and brightness. Image formation involves radiometric
as well as geometric aspects. Radiometric aspects link the radiance of the
object to the irradiance of the image plane, which depends on the amount
of radiation emitted by the object and that collected by the imaging sys-
tem and finally received by the sensor. Each point in the image has a
characteristic gray level (intensity value) corresponding to the point in
the 3D world. It is represented by luminance and reflectance components.
These components vary over the entire range of the image and can be
made use of in carrying out low level imaging such as detection of edges,
lines, shade, texture, etc.

The second aspect of image formation involves geometric aspects,
which relate the position of the object in 3D space to its position in the im-
age plane. The basic difficulty of image formation results from the fact that
the 3D world is projected onto the 2D image plane. Interpreting the infor-
mation of the 3D world requires understanding the way the projection
takes place. Through a careful modeling of the imaging process, we can
effectively model the camera as a pinhole and the mapping/projection
of the 3D world onto the image plane is then referred to as perspective
projection.

Here only a single ray from a given point of the object in the 3D world
is allowed to pass through the pinhole and form a point image on the im-
age plane. This effectively and adequately models the imaging process and

206 13 Imaging Geometry

is commonly used in imaging systems. Let us first discuss the principle of
perspective projection in one dimension.

13.4.2 Perspective Projection in One Dimension

To illustrate the concept of perspective projection, consider a camera tak-
ing one-dimensional pictures in a two-dimensional world. Here for the
sake of simplicity, the coordinate systems related to the camera and the
world coordinate system coincide.

As shown in Fig. 13.3, the camera lens is at the origin and points directly
to the Y-axis. In order to keep the image in a positive orientation, let us as-
sume that the image line is at a distance f in front of the camera lens and that
the lens projects towards it. This avoids the confusion of left–right reversal
in an image behind the lens. The image line is parallel to the X-axis.

In accordance with geometric ray optics, the ray will focus point (r, s)
on to the image line, which is a line parallel to the X-axis and at a distance
f directly in front of the lens. The position of the line is determined
by where the line from (r, s) to the origin intersects the image line.
Hence perspective projection has coordinates (rf/s, f) in the original
two-dimensional coordinate system. Here it can be seen that the relation-
ship between the point and its image bears a nonlinear relationship. How-
ever, the numerator and denominator of rf/s are linear combination of r and
s. This indicates that the camera transforms the point (r, s) to the image
point I by linear transformation T in projective coordinates. This can be il-
lustrated by using a homogeneous coordinate system which will be cov-

Fig. 13.3. Two dimensional perspective projection

(r, s)
Y

(rf/s, f)

X

Lens

f

Image line

13.4 Imaging Geometry 207

ered in the next section. The point (r, s) is represented as (r, s, 1) in the
homogenous coordinate system. The first linear transformation translates
the point (r, s, 1) down the Y-axis by a distance f. The second trans-
formation takes the perspective transformation to the image line. Hence,

With this understanding of perspective projection, let us discuss the proc-
ess of 3D perspective projection.

13.4.3 Perspective Projection in 3D

The camera is modeled as a pinhole with an optical center and an image
plane which is usually perpendicular to the optical axis, the block diagram
of which is represented in Fig. 13.4. Imaging systems, when used to image
a scene from different directions and positions, make use of several coor-
dinate systems, i.e. a world or user selected coordinate system which is re-
lated to the observed scene, and the camera coordinate system which is
usually centered at the optical center and whose Z-axis is aligned along the
optical axis of the camera. The image plane centric coordinate system,
which is aligned with the camera coordinate system, shifts a distance f
from the optical center. The sensor-based coordinate system is attached to
the sensor and depends on the arrangement of the pixel matrix.

There are several frameworks for defining the configuration of the vari-
ous coordinate systems. Here let us assume the optical center to be the
origin of the camera coordinate system and the projection plane to be situ-
ated at (0, 0, −f), i.e. at a distance of f behind the optical center. Here f is
known as the principal distance or camera focal length. For the sake of

Fig. 13.4. Imaging geometry in 3D space

Model of Per-
spective Pro-
jection Trans-

form

Object Point
(3D world)

Image Point
(2D Image)

Camera Parameters

)1.13(
1
s
r

100
f10

001

1
0

f
1
0

0
1

kv
ku

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

208 13 Imaging Geometry

 Fig. 13.5. Camera model of 3D projection (the global coordinate system and cam-

era coordinate systems are assumed to be the same here)

simplicity, at first the world coordinate system is taken to align with the
camera coordinate system.

In Fig. 13.5, a point having spatial coordinates (x, y, z) is mapped onto
its image I(u, v) on the image plane. Using the principle of perspective pro-
jection

Properties of the 3D Projection System

1. It can be seen that the two world coordinates parallel to the image plane
are scaled by a factor f/z. Thus image coordinates contain ratios of world
coordinates.

2. The imaging model for perspective projection also maps straight lines in
the world onto straight lines on the image plane. However, perspective

)2.13(y
z
fv.

f
v

z
y

x
z
fu.

f
u

z
x

−=⇒−=

−=⇒−=

Yc=Y

P (x, y, z)
3D object point

Global and Camera coordinate
system (coincident)

Zc=Z (Optical Axis)

Optical
Center

Front Projection
Option

Xc=X

I(u,v)

YI

XI

13.4 Imaging Geometry 209

projection does not preserve distances between points, nor their ratios.
Thus if A, B, C are collinear in 3D space, then

 AC/BC ≠ ac/bc (13.3)

 where AC and BC represent the distance between points A and B, B and

C, etc. while ac, bc, denote the distances between the corresponding
projected points on the image plane. It is also seen from Fig. 13.5 that
an object point located anywhere on the line segment PO will be pro-
jected onto the same point I. This shows that perspective projection is a
many-to-one transformation.

3. Equation (13.2) is essentially nonlinear in nature since it involves divi-
sion by z. However, the numerator and denominator are linear combina-
tions. It is usually desired to express the mapping from 3D to 2D by
means of a linear transformation. To effect this linear transformation,
requires the use of a homogenous coordinate system. The homogenous
coordinates for the physical point (x, y, z) in 3D space are represented
by the 4 × 1 vector (kx, ky, kz, k) where k is an arbitrary scalar. To con-
vert the homogenous system back to the physical coordinate system, we
divide all components by k and delete the row containing it.

At this point, we can put the 3D–2D transformation in a linear matrix form
given by (13.4).

This is the representation of the 2D point in the image plane located at (0,
0, −f). Hence the value of w will be kw/w = z/(−z/f) = −f as verified. Now
let us try to recover the 3D object point from its coordinates in the image
plane by taking the product of the inverse of the linear transformation
matrix and the image plane coordinates. Then we will definitely arrive at
erroneous results, or ambiguity. This is because of the many-to-one trans-
formation characteristic of the perspective matrix. Knowledge of at least
one 3D coordinate is essential for reconstruction of the 3D point. If we try
to represent the image plane coordinates w.r.t. a coordinate system cen-
tered on the image plane as shown in Fig. 13.6, then it is required to trans-
late the coordinate system from the center of perspectivity to the image
plane by a distance f along the optical axis. The point will now be

)4.13(

1
z
y
x

0f/100
0100
0010
0001

k
kw
kv
ku

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

210 13 Imaging Geometry

u, v) and thus the homogenous representation
will be (ku, kv, k) with w = 0. It is thus necessary to delete the third row in
the linear transformation matrix, which is also known as the perspective
matrix and it takes the form shown in (13.5) below. It is now seen that the
perspective matrix becomes non-invertible.

The above linear transformation matrix may be visualized in terms of
two transformations i.e. one for translating the coordinate system from the
center of perspectivity to the image plane-centric system, and the other for
taking the perspective projection. Hence the transformation can be repre-
sented by (13.6).

Analogously, if we take the front projection the perspective relation takes
the form of an equation as shown in equation (13.7).

It has been assumed so far that the camera and the world coordinate system
coincide with each other. In this case, however, when it is required to es-
timate the 3D features w.r.t. a user selected world coordinate system, it is a
cumbersome task to take the camera system as the reference for each view
position. Hence we need to dissociate the camera and world coordinate
system, when we take several images of the 3D scene from different view-
ing position.

)5.13(

1
z
y
x

0f/10
001
000

0
0
1

k
kv
ku

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)6.13(

1
z
y
x

1000
f100
0010
0001

1
0
0

f1
0
0

0
1
0

0
0
1

k
kv
ku

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)7.13(

1
z
y
x

1000
f100

0010
0001

1
0
0

f1
0
0

0
1
0

0
0
1

k
kv
ku

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

represented by two coordinates (

13.5 Global Representation 211

Fig. 13.6. Generalized camera model of 3D projection

In order to consider perspective projection, in such cases it is first required
to align the world coordinate system with the camera coordinate system.
This can be achieved by performing a translation of the global/world coor-
dinate system to the origin of the camera system by a translation vector
denoting the directed distance between them. Then a series of rotations is
performed about suitably chosen axes so that the world system coincides
with the camera system. The overall process can be summed up by a rela-
tion (13.8).

 Âc= Â′= R(Â – T) (13. 8)

where Â represents the global system (X, Y, Z), Â′ represents the trans-
formed global system, Âc represents the camera system (Xc Yc, Zc) and T
and R represent translation and rotation vectors.

The process of aligning two coordinate systems is discussed in the next
section.

13.5 Global Representation

The construction of the global map requires a common frame of reference,
considering the camera coordinate system, which is a cumbersome proc-
ess. This is because the camera coordinate system goes on changing from

212 13 Imaging Geometry

position to position and thus it is necessary to take into account the relative
changes in the camera position at each location. Hence a user defined co-
ordinate system is used, which is also called the global system. All meas-
urements are then estimated w.r.t. the global system. This ensures conven-
ience in constructing the world/global map by fusing the multiple-image
information from several local maps. The camera coordinate system shown
in Fig. 13.7 is attached to the robot and can take multiple images of the
scene from different positions and directions.

In order to have a global representation, it is necessary to establish a re-
lationship between the maps sensed by camera, i.e. the camera coordinate
system and the global coordinate system. It is necessary to bring about a
series of transitions of the coordinate system pertaining to the correspond-
ing frames of reference. The first step is the transition of the camera-based
coordinate system to the robot coordinate system, for transforming the sen-
sor map to the virtual map. Let (xc, yc, zc), be the displacement vector of the
origin of the vehicle based coordinate system w.r.t. the camera-based co-
ordinate system. Then in the estimation, the origin of the camera-based

Fig. 13.7. Relationship between different coordinate systems

13.5 Global Representation 213

coordinate system is to be shifted by the above translation vector so that it
coincides with the origin of the robot coordinate system, denoted by (13.9)

where Xc, Yc, Zc corresponds to the axes of the camera-based coordinate
system. The alignment of the two system axes after translation is shown in
Fig. 13.8.

Next the new coordinate system is aligned with the robot coordinate
system, so that a relation is established between the camera-based coordi-
nate system with the robot coordinate system, which is done by a sequence
of rotations about properly chosen axes.

Step 1: Rotation about the Zc′ axis by φ1: In this case the Xc′ – Yc′ plane
is rotated about the Zc′ axis by φ1 where φ1 is the angle between Xc′ and the
Xv– Zc′ plane measured along the Xc′ – Yc′ plane. The new coordinate sys-
tem is represented by (13.10) and shown in Fig. 13.9.

)10.13(
100
0cossin
0sincos

'
c

'
c

'
c

11

11

''
c

''
c

''
c

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Z
Y
X

Z
Y
X

φφ
φφ

)9.13(
zZ
yY
xX

Z
Y
X

cc

cc

cc

'
c

'
c

'
c

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Fig. 13.8. Orientation of camera axes after translation to the robot coordinate sys-
tem. Yv and Xv lie on the black plane, while Zv is perpendicular to it. Xc′ and Yc′ lie
on the white plane while Zc′ is perpendicular to it. Xc′ will be rotated to Xv– Zc′
plane

Zv

Yv

Xv

Yc′

Xc′Zc′

φ1

214 13 Imaging Geometry

Fig. 13.9. Orientation of camera axes after step 1. Yv and Xv lies on the black
plane, while Zv is perpendicular to it. Yc′′ lies on the white plane while Zc′′ and
Xc′′ are perpendicular to it. Now the Xc′′– Zc′′ plane will be rotated by an angle θ1
in order to align Xc′′ with Xv

Step 2: Rotation about the Yc′′ axis by θ1: Here the Xc′′–Zc′′ plane is ro-
tated about the Yc′′ axis by an angle θ1, where θ1 is the angle between Xc

′′
and Xv along the Xc′′–Zc′′ plane. Thus the new coordinate system is repre-
sented by (13.11) and shown in Fig. 13.10.

)11.13(
Z
Y
X

0cossin
100
0sincos

Z
Y
X

''
c

''
c

''
c

11

11

'''
c

'''
c

'''
c

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θθ−

θθ
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Yv

Xv

Yc′′

Xc′′

Zc′′
θ1

Zv

13.5 Global Representation 215

Fig. 13.10. Orientation of camera axes after step 2. Yv and Xv lie on the black
plane, while Zv is perpendicular to it. Yc′′′ lies on the white plane while Zc′′′ and
Xc′′′ are perpendicular to it. Xc′′′ is seen to be aligned with Xv. Now the Yc′′′– Zc′′′
plane will be rotated by an angle ψ1 in order to align Zc′′′ with Zv. Then the Yc′′′
will be automatically aligned with Yv

Step 3: Rotation about the Xc′′′ axis by ψ1: Here the Yc′′′–Zc′′′ plane is
rotated about the Xc′′′ axis by ψ1, where ψ1 is the angle between Zc′′′ and Zv
measured along the Yc′′′–Zc′′′ plane. Thus the new coordinate system is de-
noted by (13.12) and shown in Fig. 13.11.

)12.13(
Z
Y
X

0cossin
0sincos
100

Z
Y
X

'''
c

'''
c

'''
c

11

11
iv
c

iv
c

iv
c

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ψψ−
ψψ=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Yv

Xc′′′= Xv
Yc′′′

Zc′′′

Zv

ψ1

216 13 Imaging Geometry

Fig. 13.11. Orientation of camera axes after step 3. The camera and the robot

Now, it can be easily seen that the camera coordinate system can be trans-
lated to the robot coordinate system by the relationship (13.13).

)13.13(
zZ
yY
xX

100
0cossin
0sincos

0cossin
100
0sincos

0cossin
0sincos
100

Z
Y
X

Z
Y
X

cc

cc

cc

11

11

11

11

11

11

iv
c

iv
c

iv
c

v

v

v

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φφ−
φφ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θθ−

θθ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ψψ−
ψψ=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Yc
iv=Yv

Xc
iv= Xv

Zc
iv= Xv

coordinate systems are now aligned after one translation and three subsequent
rotations

13.6 Transformation to Global Coordinate System 217

13.6 Transformation to Global Coordinate System

Global representation can be obtained from the robot coordinate system by
establishing a relationship between the vehicle-based coordinate system
and the object-centered coordinate system. This can be done by the follow-
ing two steps.

Step 1: Translation: The robot-based coordinate system is first translated
by the translation vector (xv, yv, zv) so that the origin of the new system co-
incides with the global coordinate system, which is denoted by equation
(13.14). After which a series of rotation is carried out for the alignment of
the two coordinate systems.

Step 2: Rotation about the Zv′ axis by φ2: This rotation is accomplished
by rotation of the Xv′–Yv′ plane about the Zv′ axis by φ2, where φ2 is the an-
gle between the Yv′ and Y0 axes. It is assumed here that the Z axis of both
coordinate systems coincides (assume the floor to be the X0–Y0 plane).
Thus the following relationship is obtained

The relationship between the camera and the robot coordinate system was
obtained in (13.13) and the relationship between the robot and the global

)14.13(
zZ
yY
xX

Z
Y
X

vv

vv

vv

'
v

'
v

'
v

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

)15.13(
zZ
yY
xX

100
0cossin
0sincos

Z
Y
X

.e.i

Z
Y
X

100
0cossin
0sincos

Z
Y
X

Z
Y
X

vv

vv

vv

22

22

0

0

0

'
v

'
v

'
v

22

22

0

0

0

''
v

''
v

''
v

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φφ−
φφ

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
φφ−
φφ

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

218 13 Imaging Geometry

coordinate systems by (13.15). Thus it is possible to obtain a relationship
between the camera and object-centered coordinate system by combing
these two equations.

Once the alignment is completed, the perspective projection is carried
out by summing up all the processes as follows:

where (x0,y0,z0) represents the displacement vector of the camera coor-
dinate system with respect to a user defined coordinate system. A and B
represents the pan angle and tilt angle of the camera respectively, shown in
Fig. 13.12 (b) and (c), and C represents the skew angle, i.e. the orientation
of the image plane w.r.t. the camera coordinate system which is nil in our
case. From the above relation we can easily derive the perspective matrix
(T) of the camera, which is denoted by (13.17)

)16.13(

1
Z
Y
X

1000
z100
y010
x001

1000
0100
00cossin
00sincos

1000
0cos0sin
0010
0sincos

1000
1AcosAsin0
0sincos0
0001

1000
f100
0010
0001

1
0
0

f1
0
0

0
1
0

0
0
1

k
kv
ku

0

0

0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
ψψ
ψ−ψ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

φφ−

φφ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
θ−θ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

13.6 Transformation to Global Coordinate System 219

Fig. 13.12 (a) Generalized camera model of 3D projection

)17.13(

1000
z100
y010
x001

1000
0100
00CcosCsin
00CsinCcos

1000
0Bcos0Bsin
0010
0Bsin0Bcos

1000
1AcosAsin0
0AsinAcos0
0001

1000
f100
0010
0001

1
0
0

f1
0
0

0
1
0

0
0
1

t
t
t

t
t
t

t
t
t

t
t
t

T

0

0

0

34

24

14

33

23

13

32

22

12

31

21

11

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

220 13 Imaging Geometry

(b)

(c)

Fig. 13.12 (b) Pan angle of the camera with the reference coordinate system; (c)
Tilt angle of the camera with the reference coordinate system

13.7 Summary

This chapter briefly highlights robot perception and the process of image
formation using perspective projection geometry. The expression for de-
termining the perspective matrix of the camera, which transforms 3D ob-
ject points onto the image plane, has been derived.

Optical axis of the refer-
ence coordinate system

Optical axis of the camera
coordinate system

Z

X

Z

Zc

A

Optical axis of the reference
coordinate system

Optical axis of the camera
coordinate system

B

Zc

Xc

X

14 Image Capture Program

14.1 Introduction

In the last chapter we saw that vision is one of the important human senses
and this is also the case for robots. In this chapter we will discuss how to
capture the gray and color images using a camera from the surroundings.
Here the image is captured by the camera fitted to the robot and controlled
from a remote client. The program is developed in a client–server para-
digm. During the run session, the color images are continuously being sent
to the client. When the user at the client requests a color image, the color
image displayed on the client screen is selected, and when the grayscale
image is required the color image is converted to grayscale in the client.
As the color images have larger bandwidth, transmitting them directly
would require a substantial amount of time and memory as well. There-
fore, run-time encoding is used in the server program, which is discussed
below.

14.2 Algorithm for Image Capture

The run-length encoding and server and client algorithm is given below.
The server program and the client program are given in Listings 14.1 and
14.2 respectively at the website of the book. The program log session is
given below and the output is illustrated in Figs. 14.1 and 14.2.

Run Length Encoding Algorithm

Step 1: The color and grayscale images are obtained.
Step 2: C(x) – color pixel at location x.

G(x) – grayscale pixel at location x.
Count = 0, x = 0, x_cur = 0;

Step 3: x_cur = x_cur + 1

222 14 Image Capture Program

 If x_cur > Max
Goto step 5.

Step 4: If Absolute(G(x_cur) – G(x)) > range
Count ++
x++
Goto Step 3.
Else
The RGB values of location “x” and count are sent from the server
to the client.
Count =0, x = x_cur;
Goto Step 3.

Step 5: The RGB values of location “x” and count are sent from the server
to the client.

Step 6: Continue with next image, i.e. Goto Step 1.

Server Program Algorithm

Step 1: Open the server socket and wait for the client to join.
Step 2: Once the client has joined start the run-length algorithm.
Step 3: When the user interrupts, close the sockets and stop the program.

Client Program Algorithm

Step 1: Connect to the server socket if opened.
 x = 0, max = 320 × 240 (size of the image)
 flag = true, (for color image)
 Image() = image pixel array.
Step 2: Keep reading the socket till four integer values are received (RGB

and count) from the socket.
Step 3: for I = 0 , I < count , I ++
 If flag = true
 Image(x)(0) = R,
 Image(x)(1) = G,
 Image(x)(2) = B,
 x++;
 Else
 Image(x) = 0.11*R+0.56*G+0.33*B
Step 4: If x = max
 Display the image.
 Else goto Step 2.
Step 5: On user interruption
 If color button

14.2 Algorithm for Image Capture 223

 flag = true
 If gray scale
 flag =false
 If cross
 Goto Step 6.
Step 6: Stop.

Program output log

IEEE 1394 interface open request
1 card(s) found, 2 node(s)
Checking card 0, node 0
Vitana api addr: 78080600
Vendor length is 10
Vendor is: VITANA
Model length is 10
Model is: PixeLINK(tm)
Camera found at node 0 0: VITANA PixeLINK(tm)
Camera ISO bandwidth needed: A10
Max_Image_Size_Inq: 05080408
Unit_Size_Inq: 00080008 (0)
Image_Size_Inq: 05000400 (0)
Frame_Rate_min: 0000000E (0)
Frame_Rate_max: 000000A0 (0)
Frame_Rate_def: 00000008 (0)
Flags: 00000000 (0)
PCS2112 ver 0x30
Imager reset starting...
Imager reset succeeded
Imager ready.
Camera ISO speed set to 400 Mb/sec
Camera ISO parameters: 2000000
Opened frame grabber.
Size: 320/1280 240/960
Opened the server port
Client has connected
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 4 (431D7000 42A16010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4

224 14 Image Capture Program

DBC count error... 108 142 3 150084
DBC count error... 12 42 2 5148
DBC count error... 52 62 4 83272
DBC count error... 228 244 3 47500
DBC count error... 35 69 3 120996
DBC count error... 91 129 3 106072
DBC count error... 104 130 4 124016
DBC count error... 138 175 2 116968
DBC count error... 235 17 3 121468
DBC count error... 164 195 3 137528
DBC count error... 87 121 3 115876
DBC count error... 234 0 3 57524
DBC count error... 83 118 3 36856
DBC count error... 178 206 3 156204
DBC count error... 47 66 3 82984
DBC count error... 73 107 3 112568
DBC count error... 18 46 3 158060
DBC count error... 51 86 3 90124
DBC count error... 117 152 3 137812
DBC count error... 32 66 2 161312
DBC count error... 192 226 3 118320
Closing video device and TCP connection ...
Stopping DMA
Aria: Received signal 'SIGINT'. Shutting down.
Closing video device and TCP connection ...
Stopping DMA
ISO thread terminated

Fig. 14.1. Color image from image capture program

14.3 Summary 225

Fig. 14.2. Grayscale image from image capture program

14.3 Summary

It can be seen in Fig. 14.1 that there are two buttons “Color” and “Gray-
Scale”. When the “Color” button is pressed, the color image from the robot
server is displayed in the Java frame, while when the “GrayScale” button
is pressed the color image is converted into grayscale and displayed. Gen-
erally the image manipulations are carried out on grayscale images.

15 Building 3D Perception Using a Kalman Filter

15.1 Introduction

A Kalman filter is a recursive digital filter [Brown, 1997] that acts as a
set of incoming data structures to estimate the parameters of a system.
Ayache employed Kalman filtering [Ayache, 1987; Ayache, 1991] for
3D reconstruction of images. In fact the Kalman filter can be used to
construct 2D lines from noisy 2D image points, affine 3D points from 2D
image points, affine 3D lines from noisy 2D image points or from affine
2D lines or from 3D points, and 3D planes either from 3D points or 3D
lines. Before employing Kalman filtering for 3D reconstruction, we will
briefly outline the minimal parametric representation of 2D lines, 3D
lines, and 3D planes. After the minimal representation, these parameters
can be directly used to recursively update the filter equation in order to
find the estimators of the system. A 3D reconstruction is required, gener-
ally, to find the depth information of an object. The images by which the
depth can be measured are usually called stereo images. A number of
cameras are employed to extract the features of the stereo images. The
number of cameras is generally restricted to three for most image proc-
essing applications. The significance of the Kalman filter in 3D recon-
struction lies in streamlining the process of feature extraction through
multiple cameras. In this chapter, we present some experiments to con-
struct (a) 3D points from noisy 2D image points, (b) a 3D line from 3D
points and (c) a 3D plane from 3D points. Let us first discuss the possible
minimal representation of 2D lines, 3D lines, and 3D planes.

15.2 Minimal Representation

A 2D line AB can be minimally best represented by two parameters a and
p as evident from Fig. 15.1. The advantage of this parameterization is that
the equation of the lines is linear in the parameters (a, p), which is essential

228 15 Building 3D Perception Using a Kalman Filter

in the formulation of the recursive Kalman filtering equation. Secondly
the state vector which is derived from these parameters satisfies the ine-
quality check criteria of the recursive Kalman filter.

Similarly, the 3D line CD can be minimally represented by four parame-
ters a, b, p, q, as shown in Fig. 15.2 and the plane EFGH can be repre-
sented by three parameters a, b, p as shown in Fig. 15.3.

a x + y + p = 0 (when the line is not parallel to the Y-axis), or
x + a y + p = 0 (when the lines are not parallel to the X-axis)

Fig. 15.1. A 2D line AB that passes through (0,−p), normal to the line, passing
through (0,0) and (a,1), can be represented by two parameters a and p

x = a z + p and y = b z + q (when the line is not orthogonal to the Z-axis)
y = a x + p and z = b x + q (when the line is not orthogonal to the X-axis)
z = a y + p and x = b y + q (when the line is not orthogonal to the Y-axis)

Fig. 15.2. A 3D affine line CD that passes through the XY plane at a point (p, q,
0) and having the direction vector (a, b, 1)T can be represented by four parameters
a, b, p, q

15.3 Recursive Kalman Filter 229

a x + b y + z + p = 0 (when the planes are not parallel to the Z-axis)
 x + a y + b z + p = 0 (when the planes are not parallel to the X-axis)
b x + y + a z + p = 0 (when the planes are not parallel to the Y-axis)

Fig. 15.3. A 3D affine plane EFGH that passes through (0,0,−p) and normal to the
plane passing through (0, 0, 0) and (a, b, 1) can be represented by three parameters
a, b, p

The parameters mentioned above help in representing the affine lines
and planes in a minimum, complete and unambiguous manner, which can
be used in subsequent estimation. Further, it is to be noted that the repre-
sentations also satisfy the differentiability criteria to allow linearization of
the measurement equation in the formulation of the recursive Kalman fil-
ter, to be covered in the next section.

15.3 Recursive Kalman Filter

A Kalman filter is a digital filter that attempts to minimize the measure-
ment noise from estimating the unknown parameters, linearly related with
a set of measurement variables. The most important characteristic of this
filter is that it allows a recursive formulation and the user can improve the
accuracy of the estimation to a desired level at the cost of new measure-
ment inputs.

Let
 xi be a measurement vector of dimension (mi × 1),

230 15 Building 3D Perception Using a Kalman Filter

 Ki be the filter gain matrix of dimension (n × pi),
 ai be the estimator vector of dimension (n × 1),
 Mi be a system matrix of dimension (pi × n) such that

a
fM i

i ∂
∂

= (15.1)

where, fi (xi, a) = 0 is a set of equations describing the relationships be-
tween a parameter vector a and the measurement variable vector xi,

is a modified measurement vector of dimension (pi x 1), obtained by lin-
earization of fi (xi, a) = 0 around xi =xi-1 and a =a* using Taylor series.

where wi = (∂fi / ∂x) (xi – xi *) is the measurement noise vector of dimen-
sion (pi × 1) and Λi is a positive symmetric matrix.

Si = E [(ai – ai*) (ai – ai*)T] is the error covariance matrix of the estima-
tor a.

The recursive formulation of an EKF includes the following three steps.

Ki = Si – 1 Mi T (Wi + Mi Si – 1Mi

 T) - 1 (15.3)

ai* = ai – 1* + Ki (yi – Mi ai –1*) (15.4)
Si = (I – Ki Mi) Si – 1 (15.5)

The algorithm is initialized with a large S0. The values of yi, Mi, Wi are
computed following their above definitions. a0 is initialized as a null vec-
tor. The algorithm then continues iterating in sequence until Si comes be-
low a predefined threshold. The resulting ai after termination of the algo-
rithm is the desired estimator. A schematic diagram depicting the use of
EKF in estimating noise-free geometric parameters from noisy 2D images
is presented in Fig. 15.4.

)aa(]
a
f

[)a,x(fy *
1i)a,x(

i
1i

*
iii

1i
*
i

−− −
∂
∂

+−=
−

)2.15(]]
x
f[[]

x
f[]ww[EW Ti

i
iT

iii
)1ia,*

ix()1ia,*
ix(−− ∂

∂
∧

∂
∂

==

15.4 Experiments and Estimation 231

Fig. 15.4. Schematic diagram of a recursive Kalman filter

15.4 Experiments and Estimation

The experimental set-up was designed for image abstraction of a wooden
block from different angles by a mobile robot for 3D reconstruction. Fig.
15.5 illustrates the trajectory of the camera movement by the robot around
the block W. Six snaps have been taken in each of the four segments sepa-
rated by the lines aa' and bb', bb' and cc', cc' and dd', dd' and aa' respec-
tively. These four sets of images are illustrated by Set I, Set II, Set III and
Set IV, respectively. To illustrate the use of Kalman filter, we first explore
the possibility of reconstructing the 3D points from multiple 2D points,
followed by a 3D line from 3D points, and a 3D plane from 3D points. The
detailed program is covered in the next chapter.

Noise-free geo-
metric parame-

ter

Measure-
ment Vec-

tor (xi)

Linear
transfor-

mation Mi

Camera Image

]))([(*
00

*
000

TaaaaES −−=

 a

a0=initial state parameter

Wi =measurement noise vector

1

11

*
1

*
1

*

)(
(

)(

−

−−

−−

−=
+=

−+=

iiii

T
iiii

T
iii

iiiiii

SMKIS
MSMWMSK

aMykaa

Required State
Estimator ai

Noise State Estimation

232 15 Building 3D Perception Using a Kalman Filter

Fig. 15.5. The trajectory of camera movement by a robot R around the block A to
grab its image from 24 different locations, denoted by triangles. Grabbed images
at a few locations are shown

15.4 Experiments and Estimation 233

Set I

Visual Map_1
Pinhole Position: x=9, y=14, z=28.5,

A = 130°, B=90°

Visual Map_2
Pinhole Position: x=18, y= 15.5, z=28.5,

A=0°, B=90°

Visual Map_3
Pinhole Position: x=24, y=13.5, z=28.5,

A=0° B=90°

Visual Map_4
Pinhole Position: x=26.5, y=13.7, z=28.5,

A=13° B=90°

Visual Map_6
Pinhole Position: x=32.5, y=14.8, z=28.5,

A=15° B=90°

Visual Map_5
Pinhole Position: x=28, y=3, z=28.5,

A=0° B=90°

234 15 Building 3D Perception Using a Kalman Filter

Set II

Visual Map_1
Pinhole Position: x=59.5, y=28.2, z=28.5,

A= 53°, B=130°

Visual Map_2
Pinhole Position: x=65, y=34, z=28.5,

A= 45°, B=90°

Visual Map_3
Pinhole Position: x=67.0, y=40.0, z=28.5,

A= 71°, B=90°

Visual Map_4
Pinhole Position: x=72.3, y=50.1, z=28.5,

A= 78°, B=90°

Visual Map_5
Pinhole Position: x=69.5, y=52.0, z=28.5,

A= 90°, B=90°

Visual Map_6
Pinhole Position: x=70.7, y=62.5, z=28.5,

A= 100°, B=90°

15.4 Experiments and Estimation 235

Set III

Visual Map_1
Pinhole Position: x=36.5, y=98.5, z=28.5,

A= 160°, B=90°

Visual Map_2
Pinhole Position: x=27.5, y=97.5, z=28.5,

A= 180°, B=90°

Visual Map_3
Pinhole Position: x=20.0, y=96.0, z=28.5,

A= 185°, B=90°

Visual Map_4
Pinhole Position: x=17.5, y=96.0, z=28.5,

A= 190°, B=90°

Visual Map_5
Pinhole Position: x=14.5, y=96.5, z=28.5,

A= 192°, B=90°

Visual Map_6
Pinhole Position: x=7.0, y=95.0, z=28.5,

A= 200°, B=90°

236 15 Building 3D Perception Using a Kalman Filter

Set IV

Visual Map_1
Pinhole Position: x=−7.0, y=69.0, z=27.0,

A= 242°, B=140°

Visual Map_2
Pinhole Position: x=−11.5, y=62.0, z=27.0,

A= 245°, B=140°

Visual Map_3
Pinhole Position: x=−13.5, y=59.7, z=28.5,

A=270°, B=90°

Visual Map_4
Pinhole Position: x=−13.0, y=52.0, z=28.5,

A= −80°, B=90°

Visual Map_5
Pinhole Position: x= −8.0, y=46.5, z=28.5,

A=−70°, B=90°

Visual Map_6
Pinhole Position: x=−6.5, y=40.8, z=28.5,

A=−65°, B=90°

15.4 Experiments and Estimation 237

15.4.1 Reconstruction of 3D Points

The coordinates of the 2D vertices of the block W, measured from these
six images, have been used recursively as the input to a Kalman filter for
the reconstruction of their 3D coordinates. Fig. 15.6 illustrates the input
and output parameters of a Kalman filter employed for reconstruction of
3D coordinates of a vertex A from six 2D image coordinates A1 through
A6 of the same vertex A. The equations used for 3D reconstruction in the
present context are given by the following expressions:

where Mi is a 2 × 3 matrix and yi is a two dimensional vector, tij means the
i-th row and j-th column element of the perspective matrix T (discussed in
the last chapter) and ti is the first three elements of the i-th row of the same
matrix T. (ui, vi) is the 2D image points of the vertex.

 The measurement error matrix wi is a 2 × 2 matrix estimated by the fol-
lowing expression:

Further, a = estimation vector = [x, y, z]T with initial value of [0, 0, 0]T;
and with a very large initial covariance matrix So, which is of size 3×3 in
this case.

 The first two iterations of the estimation process of reconstructing the
3D point from the multiple 2D image points is given in Listings 15.1 and
15.2 respectively. The inputs of Box 1 are a 2D point (u1,v1)= (−2.7, 1.3)
and a set of camera parameters x0=36.5, y0=98.5, z0=28.5, A=2.793,
B=−1.97, C=0. The output of Box 1 is the 3D point (x, y, z)= (22.11, 6.84,
−19.57) and the covariance matrix is

)7.15(
)ttv(
)ttu(

M

)6.15(
tvt
tut

y

T
23i

T
13i

i

34i34

34i34
i

⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=

⎥
⎦

⎤
⎢
⎣

⎡
−⋅
−⋅

=

)8.15(
tat0

0tat
x
fw

341i3

341i3

i
i ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅−

−⋅−
=

∂
∂

=
−

−

238 15 Building 3D Perception Using a Kalman Filter

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2161.74021.5627.5
4021.57699.31192.9
627.51192.9232.6

Similarly the input of Box 2 is the 2D point (u2,v2)= (−2.25, 1.3) and a new
set of camera parameters x0=27.5, y0=97.5, z0=28.5, A=3.14, B=−1.97,
C=0. The output of Box 2 is the 3D point (x, y, z)= (32.04, 63.64, 10.44)
and the covariance matrix is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

240.84413.284.43
413.28805.888.92

4.428.9222.76

Fig. 15.6. Extraction of the 3D points from six 2D image points. 2D points A1
through A6 have been fused to point A by Kalman filtering. The other points B, C,
D, E, F, F in the figure have been reconstructed similarly

15.4 Experiments and Estimation 239

First iteration in the estimation process of 3D point reconstruction from noisy 2D
points using a Kalman filter.

Initial State vector a = [a10, a20, a30] = [0 0 0]T (initial assumption).
Initial error covariance matrix S0 (a very large value) =

 9999 0 0
 0 9999 0
 0 0 9999

Substituting the first value of the measurement vector (xi) that is taken from image
= (u1, v1) = (−2.7, 1.3)
The camera parameters: (x0, y0, z0, A, B, C) = (36.5, 98.5, 28.5, 2.793, −1.97, 0)
The perspective matrix for the above camera parameter can be calculated by using
following expression.

 t11 t12 t13 t14 −0.135 0.049 0 0.09
T= t21 t22 t23 t24 = 0.019 0.053 −0.13 −2.16
 t31 t32 t33 t34 −0.002 −0.008 1.0 1.0

y1 = t34*u1 − t14 = −2.79
 t34*v1 − t24 3.45

M1 = − (u1*[t31 t32 t33] − [t11 t12 t13]) = −0.143 0.027 −0.009
 − (v1*[t31 t32 t33] − [t21 t22 t23]) 0.023 0.063 −0.128

W1= − ([t31 t32 t33]*[a10 a20 a30]-t34) 0 = 1.0 0
 0 − ([t31 t32 t33]*[a10 a20 a30] −t34) 0 1.0

 −6.67 1.01
K1 = Kalman Gain = S0*M1

T*(W1+ M1*S0*M1
T) = 1.33 3.05

 −0.54 6.01

 22.11
State estimator a1 = a0+ K1*(y1−M1*a0) = 6.84
 −19.57

 232.6 1192.9 627.5
Error covariance matrix S1 = (I−K1*M1)*S0 = 1192.9 7699.3 4021.5
 627.5 4021.5 2161.7

Listing 15.1

240 15 Building 3D Perception Using a Kalman Filter

Second iteration in the estimation process of 3D point reconstruction from noisy
2D points using a Kalman filter.

Initial State vector a1 = [a11, a21, a31] = [22.11 6.84 −19.57]T (from 1st iteration).
Initial error covariance matrix S1 (from 1st iteration)=

 232.6 1192.9 627.5
 1192.9 7699.3 4021.5

 627.5 4021.5 161.7

Substituting the second measurement vector: (u2, v2) = (−2.25, 1.3)
The camera parameters for the second iteration: (x0, y0, z0, A, B, C) = (27.5, 97.5,
28.5, 3.14, −1.97, 0)
The perspective matrix T2 for the above camera parameter is

 −0.154 0 0 4.226
 0 0.060 −0.141 −1.849
 0 −0.009 1.0 1.0

y2 = t34*u2 − t14 = −6.48
 t34*v2 − t24 3.15

M2 = − (u2*[t31 t32 t33] − [t11 t12 t13]) = −0.154 −0.020 −0.009
 − (v2*[t31 t32 t33] − [t21 t22 t23]) 0 0.072 −0.136

W2= − ([t31 t32 t33]*[a11 a21 a31] −t34) 0 = 1.027 0
 0 − ([t31 t32 t33]*[a11 a21 a31] −t34) 0 1.027

 −3.192 −0.039

K2 = Kalman Gain = S1*M2
T*(W2+ M2*S1*M2

T) = −18.276 1.756
 −9.640 −2.932

 32.04

State estimator a2 = a1+ K2*(y2−M2*a1) = 63.64
 10.44

 22.79 −8.92 −4.42

Next Error covariance matrix S2 = (I− K2*M2)*S1 = −8.92 805.88 413.28
 −4.43 413.28 240.84

and this will continue until all the measurement vector is exhausted or up to the
specified covariance error.

Listing 15.2

15.4 Experiments and Estimation 241

The response of the Kalman filter with subsequent 2D image point in-
puts for reconstruction of the 3D points is presented in figure 15.6. The 3D
reconstruction of vertex A of the wooden block W is estimated recursively
by providing the 2D points as given below.

1. (u1,v1) =(−2.7, 1.3) (x,y,z) = (22.11, 6.84, −19.57)
2. (u2,v2) =(−2.25, 1.3) (x,y,z) = (32.04, 63.64, 10.44)
3. (u3,v3) =(−3.0, 1.5) (x,y,z) = (31.66, 59.26, 8.0)
4. (u4,v4) =(−2.9, 1.0) (x,y,z) = (31.47, 60.53, 9.05)
5. (u5,v5) =(−4.0, 0.9) (x,y,z) = (30.48, 65.11, 11.40)
6. (u6,v6) =(−3.7, 0.7) (x,y,z) = (31.82, 60.42, 8.86)

The recursive estimation of the 3D points is shown graphically in Fig.
15.7, where it is clear that the accuracy in the 3D reconstruction increases
with the number of 2D image points. Fig. 15.8 shows the covariance error
versus the number of iterations.

Fig. 15.7. The 3D reconstruction points with incoming stream of 2D points
A1–A6

242 15 Building 3D Perception Using a Kalman Filter

Fig. 15.8. Improvements in the accuracy of the 3D reconstruction with increase in
the number of 2D image points

15.4.2 Reconstruction of a 3D Line

For reconstruction of a 3D lines from 3D points, Kalman filtering can be
employed. The estimator, measurement parameters and other components
of the filter equation are represented by the following expressions.

where Mi is a 2 × 4 matrix and yi is a two-dimensional vector, and (xi, yi, zi)
are the coordinates of the 3D points from multiple sources serving as the
measurement vector.

)10.15(
1
0

0
1

z
0

0
z

M

)9.15(
y
x

y

i

i
i

i

i
i

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

0

200

400

600

800

1000

1200

1 2 3 4 5 6

Iterations

C
ov

ar
ia

nc
e

Er
ro

r

15.4 Experiments and Estimation 243

The measurement error matrix wi (2×3) can be estimated by the following
expression.

Further, a0 is the initial estimation vector = [a0, b0, p0, q0]T which may be
assumed any arbitrary value such as [0 0 0 0] or may be computed from
first two points as follows:

where (x, y, z) denotes the coordinate of the input 3D points and a, b, p,
and q describe the parameters of the reconstructed 3D lines in the above
expression.

 The first two iterations in the process of estimation of the 3D line recon-
struction from 3D points is given in Listings 15.3 and 15.4 respectively.
The input of Box 3 is a 3D point (x, y, z) = (8.5, 2.0, 2.5) along with the
initial state estimator a0 and covariance matrix S0. The output of Listing
15.3 is the 3D line parameters (a, b, p, q) = (3.5, 0.79, 0.13, 0.03) and the
covariance matrix S1. Similarly the input of Listing 15.4 is the 3D point (x,
y, z) = (9.0, 2.5, 2.7) along with S1 and the output derived is the updated
3D line parameters (a, b, p, q)= (2.8, 2.20, 1.49, −3.43) with covariance
matrix S2.

)11.15(
b
a

1
0

0
1

x
f

1i

1i

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

∂
∂

−

−

(15.12)
1z2z

2y1z1y2z
0q;

1z2z
2x1z1x2z

0p

1z2z
1y2y

0b;
1z2z
1x2x

0a

−

−
=

−

−
=

−

−
=

−

−
=

244 15 Building 3D Perception Using a Kalman Filter

First iteration in the process of 3D line estimation from 3D points using a Kal-
man filter.

Initial state vector a = [a0, b0, p0 q0] = [0 0 0 0]T (initial assumption).
Initial error covariance matrix S0 (a very large value) =

 9999 0 0 0
 0 9999 0 0
 0 0 999 0
 0 0 0 999

Submitting the first measurement vector (x1, y1, z1) = (8.5 2.0 2.5)

y1 = x1 = 8.5
 y1 2.0

M1 = z1 0 1 0 = 2.5 0 1 0
 0 z1 0 1 0 2 0 1

W1= −1 0 a0 −1 0 = −1.0 0
 0 −1 b0 0 −1 0 1.0
 a0 b0

 0.394 0

K1 = Kalman Gain = S0*M1
T*(W1+ M1*S0*M1

T) = 0 0.394
0.157 0

 0 0.016

State estimator a1 = a0+ K1*(y1−M1*a0) = [a1, b1, p1, q1]T

= [3.34 0.78 0.13 0.031]T

Next Error covariance matrix S1 = (I− K1*M1)*S0 =

 157.17 0 −393.32 0
 0 157.48 0 −393.30
 −393.32 0 983.28 0
 0 −393.30 0 983.28

Listing 15.3

15.4 Experiments and Estimation 245

Second Iteration in the process of 3D line estimation from 3D points using a Kal-
man filter.

Initial State vector a = [a0, b0, p0 q0] = [3.34 0.78 0.13 0.031]T (from 1st iteration).
Initial error covariance matrix S1 (from 1st iteration) =

 157.17 0 −393.32 0
 0 157.48 0 −393.30
 −393.32 0 983.28 0
 0 −393.30 0 983.28

Now substituting the second measurement vector (x2, y2, z2) = (9.0, 2.5, 2.7)

y2 = x2 = 9.0
 y2 2.5

M2 = z2 0 1 0 = 2.7 0 1 0
 0 z2 0 1 0 2.7 0 1

W1= −1 0 a1 −1 0 = 10.12 2.62
 0 −1 b1 0 −1 2.64 1.62
 a1 b1

 2.12 −0.64

K2 = Kalman Gain = S1*M2
T*(W2+ M2*S1*M2

T) = −0.666 3.76
 −5.38 1.64
 1.64 −9.28

State estimator a2 = a1+ K2*(y2−M2*a1) = [a2, b2, p2, q2]T

= [2.81 2.20 1.49 −3.44]T

Next Error covariance matrix S2 = (I−K2*M2)*S1 =

 93.59 19.93 −232.08 −49.14
 19.94 41.54 −50.60 −107.51
 −232.07 −50.60 574.39 124.63
 −49.14 −107.51 124.63 278.81

and this will continue until all the measurement vector is exhausted or up to the
specified covariance error.

Listing 15.4

246 15 Building 3D Perception Using a Kalman Filter

15.4.3 Reconstruction of a 3D Plane

For the reconstruction of the 3D plane, the Kalman filter can also be em-
ployed with a different set of measurement and estimation vectors. For the
case when the plane is not parallel to Z axis, the vectors can be represented
as follows:

a = estimation vector of the plane = [a, b, p]

where a, b, p have the usual meaning indicated in Fig. 15.3. The measure-
ment vector (xi) is the 3D points (x, y, z)

We can choose the measurement equation as:

fi(x, a) = axi + byi + zi +p = 0 (15.13)

After linearization, the following expressions can be derived for the esti-
mation.

The first two iterations of the estimation towards the construction of a
3D plane from the 3D points is given in Listing 15.5 and 15.6 respectively.
The input of Box 5 is a 3D point (x, y, z) = (0, 0, 3) along with an initial
estimator a0 and covariance matrix S0. The output of Listing 15.5 is the 3D
plane parameters (a, b, p) = (0, 0, −2.997). Similarly the input of Listing
15.6 is the 3D point (x, y, z) = (3.2, 2.2, 3.1) along with a1 and S1 estimated
in Box 5 and the output of box 6 is the 3D plane parameters (a, b, p) =
(−0.022, −0.015, −2.997).

[]

[])16.15(1ba
x
f

)15.15(1yxM

)14.15(zy

1i1i

iii

ii

−−=
∂
∂

=

−=

15.4 Experiments and Estimation 247

First iteration in the process of 3D plane reconstruction from 3D points using a
Kalman filter.

Initial State vector a0 = [a0, b0, p0] = [0 0 0]T (initial assumption).

Initial error covariance matrix S0 (a very large value) =

 9999 0 0
 0 9999 0
 0 0 999

 Submitting the first measurement vector [x1, y1, z1] = [0 0 3.0]

y1 = [−z1] = [−3.0]

M1 = [x1 y1 1] = [0 0 1]

W1= a0 b0 1 a0 = [1]
 b0
 1

 0

K1 = Kalman Gain = S0*M1
T*(W1+ M1*S0*M1

T) = 0
 0.999

State estimator a1 = a0+ K1*(y1−M1*a0) = [a1, b1, p1,]T = [0 0 −2.997]T

Next Error covariance matrix S1 = (I−K1*M1)*S0 =

 9999 0 0
 0 9999 0
 0 0 0.998

Listing 15.5

248 15 Building 3D Perception Using a Kalman Filter

Second iteration in the process of 3D plane reconstruction from 3D points using a
Kalman filter.

Initial State vector a1 = [a0, b0, p0] = [0 0 −2.997]T (from 1st iteration).

Initial error covariance matrix S1 (from 1st iteration) =

 9999 0 0
 0 9999 0
 0 0 0.998

submitting the second measurement vector [x2, y2, z2] = [3.2 2.2 3.1]

Y2 = [−z2] = [−3.1]

M2 = [x2 y2 1] = [3.2 2.2 1]

W1= a1 b1 1 a1 = [1]
 b1
 1

 0.212

K2 = Kalman Gain = S1*M2
T*(W2+ M2*S1*M2

T) = 0.145
 0

State estimator a2 = a1+ K2*(y2−M2*a1) = [a2, b2, p2,]T

 = [-0.021 0.015 −2.997]T

Next Error covariance matrix S2 = (I−K2*M2)*S1 =

 32.09 −4667.9 −0.211
 −4667.9 6789.8 −0.145
 −0.212 −0.212 0.998

and this will continue until all the measurement vector is exhausted or up to the
specified covariance error.

Listing 15.6

15.5 Correspondence Problem in 3D Recovery 249

15.5 Correspondence Problem in 3D Recovery

Let us consider two images of the same block W: images W1 and W2
shown in Fig. 15.9, which include possibly six and sometimes seven com-
mon points from two viewing positions. However, finding the correspon-
dence between the vertices of the two images is difficult. This is usually
known as the correspondence problem [Dean, 1995]. The correspondence
problem can be overcome by estimating the minimal Euclidean distance
between the 3D points obtained from two different positions (angles of
view). For example, let us consider the two sets of 3D points of the same
block W from two distinct angles of view, estimated by the Kalman filter.
In order to identify the corresponding vertex between two sets of 3D data
points, the minimal Euclidean distance is estimated for each point with all
the points of the other set. When the estimated distance is less than a
threshold value, the points from both lists are said to be corresponding
points and deleted from both lists. The two sets of 3D data points shown in
the Fig. 15.9 are estimated from distinct locations.

Fig. 15.9. Illustrating the correspondence problem. The correspondence problem
aims at mapping point A to A', B to B' and so on after rotating W1 around the Y
and Z axes

250 15 Building 3D Perception Using a Kalman Filter

Now computing the Euclidean distance between F and A' through H', it is
clear that the distance between F and F' is the least. Thus point F' in image
W2 corresponds to F in image W1.

15.6 Summary

This chapter first presented the minimal representation for the 2D line, 3D
line and 3D plane and then discussed the technique for estimation of the
3D parameter of the planar objects using an extended Kalman filter. The
results obtained from computer simulations demonstrate that the 3D sur-
face for planar objects can be reconstructed from multiple 2D images of
the same object. In the next chapter the client–server program for robot
perception will be covered.

16 Program for 3D Perception

16.1 Introduction

A client–server program for 3D perception of a planar object using a Kal-
man filter will be covered in this chapter. The program has been designed to
take snaps within an arc of 120 degrees at any number of intermediate points
defined by the user (say n) and a regular polygon with (3n) number of sides
is estimated from the given radius. Then the path is generated by trisecting
the regular polygon. For example, if the number of images required is 6 and
the radius as 1000 mm, then the path is defined by trisecting a regular 18
sided polygon of radius 1000 mm. The robot moves along each side of the
polygon and takes snaps at each vertex point facing towards the polygon.
The sample image thus obtained is used to obtain 3D information about the
planar object in the robot’s environment. This is achieved by using a recur-
sive formulation of the Kalman filter discussed in chapter 15.

The program was developed for the client–server architecture, where the
server program is written in C++ using the ARIA and SVS libraries, al-
ready discussed in Chap. 5 and the client is written in JAVA.

The necessary input is provided to the robot through the client pro-
gram. The server then samples the images and sends them to the client
along with other required information such as the robot position, the
camera span angle, tilt, heights etc. In the client, 2D information of the
images along with the camera parameters are used by another program
called Kalman.jav to estimate the 3D information of the planar object
using the Kalman filter.

16.2 Flow Chart and Source Code for 3D Perception

The client and server flow charts used for the 3D perception program are
illustrated in Figs. 16.1 and 16.2 and their sample programs written in C++
and Java are given in Listings 16.1 and 16.2 respectively at the website of

252 16 Program for 3D Perception

the book. The program output with log session is depicted in Figs. 16.3
through 16.9.

Fig. 16.1. Flowchart for client program

Start

Get color image from camera

count <N

Stop

Yes

No

Receive R=Radius and
N = number of images

Phi = (180 – (360/n/3))/2
L = length = 2RCos(Phi)

count = 0

Send image to client, with other values. Store
image locally

Turn by Phi, Move L, Turn back 180-phi,
count =count +1

16.2 Flow Chart and Source Code for 3D Perception 253

 Fig. 16.2. Flowchart for server side program

Yes

No

Start

count <N

Stop

Send R=Radius and
N= number of images

Phi = (180 – (360/n/3))/2
L = length = 2RCos(Phi)

count = 0

Send image to client, with other values ,
count =count +1

Display
image

Obtain 2D coor-
dinates for each

image

Save values in file

254 16 Program for 3D Perception

Program log session
Opened the server port
Client has connected

 1000|6|�

1000 6

one
phi=80.00 and dist=347.30
TCP connection status = 4.
Could not connect to simulator, connecting to robot
through serial.
IEEE 1394 interface open request
1 card(s) found, 2 node(s)
Checking card 0, node 0
Vitana api addr: 78080600
Vendor length is 10
Vendor is: VITANA
Model length is 10
Model is: PixeLINK(tm)
Camera found at node 0 0: VITANA PixeLINK(tm)
Camera ISO bandwidth needed: A10
Max_Image_Size_Inq: 05080408
Unit_Size_Inq: 00080008 (0)
Image_Size_Inq: 05000400 (0)
Frame_Rate_min: 0000000E (0)
Frame_Rate_max: 000000A0 (0)
Frame_Rate_def: 00000011 (0)
Flags: 00000000 (0)
PCS2112 ver 0x30
Imager reset starting...
Imager reset succeeded
Imager ready.
Camera ISO speed set to 400 Mb/sec
Camera ISO parameters: 2000000
Opened frame grabber.
Size: 320/1280 240/960
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)

16.2 Flow Chart and Source Code for 3D Perception 255

DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
Syncing 0
Syncing 1
Syncing 2
Connected to robot.
Name: arcane
Type: Pioneer
Subtype: p2de
Loaded robot parameters from p2de.p
Connected
Size: 320/1280 240/960
54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4

256 16 Program for 3D Perception

54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Size: 320/1280 240/960
Starting DMA

16.2 Flow Chart and Source Code for 3D Perception 257

Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 10 (43285000 42ADA010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
54
SEND

RECD
Stopping DMA
ISO thread terminated
turn -80.00
move 347.30
turn 100.00
Done , exiting
Disconnecting from robot.
Lost connection
Closing video device

Fig. 16.3. Output of input window

258 16 Program for 3D Perception

Fig. 16.4. Output window depicts the selection of the first point

Fig. 16.5. Output window depicts the selection of the second point

16.2 Flow Chart and Source Code for 3D Perception 259

Fig. 16.6. Output window depicts the selection of the third point

Fig. 16.7. Output window depicts the selection of the fourth point

260 16 Program for 3D Perception

Fig. 16.8. Output window depicts the selection of the fifth point

Fig. 16.9. Output window depicts the selection of the sixth point

After starting of the server program, it opens a socket and listens for a cli-
ent request. When the client is connected to the server, it launches the in-
put window where the user enters the required input, such as the radius for
the robot path and the number of images to be taken. The file name by
which the images will be stored in the robot must also be specified in this
window, which can be seen in Fig. 16.3. When the “Submit” button is
pressed the server starts the Sampler procedure and the images are sent one

16.2 Flow Chart and Source Code for 3D Perception 261

by one, which are depicted in Figs. 16.4 through 16.9. The output window
has a drop-down list using which one may select the image number. After
the images are available at the client the user can specify the fixed point of
interest in each image by clicking on the image at the desired point. These
2D values along with the robot position and camera parameter received
from the server will be stored in a file named input.dat when the “Save”
button is pressed, which is given in Table 16.1. The values stored in in-
put.dat are data for the images shown in Figs. 16.4 through 16.9.

Table 16.1. Values saved into input.dat

–1.8 1.7 9.0 14.0 28.5 –0.262 –1.574 0.0

–1.8 2.0 18.0 15.5 28.5 0.0 –1.574 0.0

–4.4 1.7 24.0 13.5 28.5 0.0 –1.574 0.0

–1.7 1.0 26.5 13.7 28.5 0.227 –1.574 0.0

–3.2 0.8 32.5 14.8 28.5 0.262 –1.574 0.0

–5.0 –0.5 28.0 3.0 28.5 0.0 –1.574 0.0

Table 16.2. 3D output after every iteration

After 1st
iteration

9.0643356698 13.9744013198 28.49088823106

After 2nd
iteration

9.5242775216 16.5935998894 29.51163005427

After 3rd
iteration

10.1995493714 15.0153226290 32.4647295181

After 4th
iteration

10.5980021371 11.0918751729 30.315874159

After 5th
iteration

11.3524524995 10.2802239269 33.0284420210

After 6th
iteration

11.8455499713 2.4803175141 33.7681237207

262 16 Program for 3D Perception

16.3 Summary

This chapter has described the program for taking 2D images from various
viewpoints in the surroundings of the robot and storing them in a given file
and later using this information for reconstruction of 3D points using the
Kalman filter. The source code of the program is available in Listing 16.3
at the website of the book. The input to the program is given from in-
put.dat shown in Table 16.1 and the program generates the output
shown in Table 16.2.

17 Perceptions of Non-planar Surfaces

17.1 Introduction

A novel technique for automated perception of a non-planar surface is
covered in this chapter. From the camera image, the area of interest is ex-
tracted first using the curve tracing method and next the nature of the curve
is predicted by using a piecewise linear approximation method.

17.2 Methods of Edge Detection

An edge is a contour of pixels that separates two regions of different inten-
sities. It can be defined as a contour along which the brightness in the im-
age changes abruptly. A very simple method for finding edges is to evalu-
ate the directional derivatives of g(x, y) in the x- and y-directions, which is
known as a gradient filter; g1 and g2 respectively denoted as follows:

y

)y,x(g
2gand

x
)y,x(g

1g
∂

∂
=

∂

∂
=

The resulting gradient can be evaluated by the vector addition of g1 and g2
and is given by

 [] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=φ+= −

2

112/12
2

2
1 g

gtanphaseandggg

A pixel is said to lie on an edge if the gradient g is above a specified
threshold. Based on this concept, various types of edge detection filters
are available in the literature [Clark, 1989; Gonzalez, 1993; Heijden, 1995;
Fram, 1975; Marr, 1980]. The gradient filter, compass filter and Laplace
filter are a few among them. The common gradient filters such as Prewitt,
Sobel and isotropic filters compute horizontal and vertical differences of

264 17 Perceptions of Non-planar Surfaces

local sums and reduce the effect of noise in the image data. All these fil-
ters have desirable properties of yielding zeros for uniform regions.

Computer vision systems often demand the segmentation of a scene into
constituent objects, which is based on the object boundaries. The object
boundary is represented by the edge, which is nothing but an abrupt
change in the gray levels. A spatial derivative of the image f(x, y) assumes
a local maximum in the direction of an edge shown in Fig. 17.1, which is
used to measure the gradient of f along r in a direction θ.

 Fig. 17.1. Finding the directional derivative of the curve f(x, y)

θ+θ=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

sinyfcosxf

(17.1)
r
y.

y
f

r
x.

x
f

r
f

The maximum value of
r
f
∂
∂ is obtained when 0=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

r
f

θ
, i.e.

θg

f (x, y) Edge

fx

fy

Y

X

17.2 Methods of Edge Detection 265

)2.17(ff
f
f

f
f

tan

0cosfsinf

2
y

2
x

maxx

y

x

y1
g

yx

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=θ⇒

=θ+θ−

−

where θg is the direction of the edge.

Based on these equations, there are two types of edge detection operators
are there, such as gradient operators and compass operators, also called as
masks. The operators represent a finite difference approximation of either

the orthogonal gradients fx , fy or the directional gradient
r
f
∂
∂ . Let H de-

notes a p × p mask. For an arbitrary image U the inner product (H operated
on U) at location (m, n) is given by the correlation

)3.17(

i j
)n,m(h)n,m(u)nj,mi(u)j,i(hn,mH,U ∑∑ −−⊗=++Δ

Gradient operators: There are pairs of masks H1 and H2, which measure
the gradient of an image u (m, n) in orthogonal directions.

Let

 n,m11 H,U)n,m(g Δ and n,m22 H,U)n,m(g Δ

where g1 and g2 are the horizontal and vertical gradient vectors, respec-
tively.

Then the magnitude and direction of the gradient vector are given by

)4.17(
)n,m(1g
)n,m(2g1tang

)n,m(2
2g)n,m(2

1g)n,m(g

−=θ

+=

266 17 Perceptions of Non-planar Surfaces

Some common gradient operators are Prewitt’s operator and Sobel’s op-
erator having the form given below:

 H1 H2

Prewitt’s operator []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
101
101

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−

111
000
111

Sobel’s operator []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
202
101

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−

121
000
121

The gradient map g (m, n) needs to undergo a threshold operation. An
edge is a point declared at the pixel point (m, n) if g (m, n) exceeds the
threshold ‘t’ which can be set by a study of the cumulative histogram of
g(m, n) so that 5–10% of pixels with the largest gradients are declared as
edges. Therefore, the edge map ε (m, n) is given as

)5.17(
0

),(1
),(
⎪⎩

⎪
⎨
⎧ >

=
otherwise

tnmg
nmε

Edge maps generated by the above operators usually have thick solid

lines as boundaries which themselves may have two edges. Thinning algo-
rithms help to transform such an image to a set of simple digital arcs,
which lie roughly along the medial axes.

17.3 Curve Tracking and Curve Fitting

Edge detection operators generate an edge map which is a spatial distribu-
tion of pixels constituting edges of an image. However, interpretive analy-
sis of the image would require knowledge of the nature of the edges which
requires knowledge of the connectivity or continuity of the edge, which
requires a contour following method or edge tracking. This method obtains
the pixels of an edge as a continuous array, where each successive member
is the neighboring point lying entirely on the edge. This can be done by us-

17.3 Curve Tracking and Curve Fitting 267

ing dynamic programming to find the optimum path between two given
pixels on the edge. The procedure for tracking the curve from the grabbed
image is given in Listing 17.1.

Listing 17.1 Procedure for tracking of the curve from the grabbed image

__
Begin:
Find image // Collect the image (Im) from the camera of
the robot and transfer it to the client machine //
Find the pixel matrix (Pm) from the image.

If:
The image is a color image
Then:

Convert it to grayscale values.

Apply the Prewitt’s operator to the pixel matrix to
calculate the horizontal (Hg)and vertical (Vg) gradient
and find their vector sum as G.

Find a suitable threshold // a suitable threshold value
(T) is chosenfor the pixel matrix //

If: G > T
Then:

It is an edge.
Else:
End for
Arrange the points obtained by the above procedure to
represent a continuous curve.
End for
End;

Curve fitting: For a given set of points, finding the equation of a curve of
best fit for the given values is called curve fitting. Once the points defining
a curve are traced from the edge map, the problem becomes one of finding
an equation for the arbitrary constants, which best defines the curve. One
may proceed using one of the following methods: (i) graphical method; (ii)
method of least squares; (iii) method of moments and (iv) method of group
averages.

When the curve representing the given data is a linear law, y = mx + c,
the graphical method proceeds as follows:

268 17 Perceptions of Non-planar Surfaces

1. Plot the given points as a graph with a suitable scale.
2. Draw the straight line of best fit such that points are equally distributed

about the line.
3. Taking two arbitrary points (x1, y1) and (x2, y2) one may find m and c.

When the points are not approximated by a straight line, one may generate
a smooth curve, using the law governing the curve and reduce it to linear
form. The graphical method, however, fails to produce an accurate and
unique fit in this case. The principle of least squares does not help much to
determine the form of the approximate curve which can fit given data. It
determines the best possible coefficient in the equation when the nature of
the curve is known a priori. As the order of the polynomial in (17.1) in-
creases it becomes exceedingly difficult to solve the equations. Moreover
the principle is hard to implement on curves defined by quadratic (or
higher) equations in both x and y (e.g. the family of curves given by

1
2

2

2

2
=+

b
y

a
x , i.e. the circle, ellipse and hyperbola).

This chapter aims at finding an alternative method to predict the nature
of the curve. This method is a graphical method to estimate the curvature
of a set of points. The points extracted from the edges of the image should
have in good proximity and sufficient continuity. Every curve has a char-
acteristic slope changing pattern, which can be found using the tangents, at
successive points in the curve. Since it is difficult to predict tangency at all
instantaneous point we shall study the secants which cut chords of equal
length such that the chords form a continuous set of connected line seg-
ments. Therefore we will study the pattern of a piecewise linear approxi-
mation of curve. This principle is demonstrated for the case of a circle and
an ellipse in Fig. 17.2.

The curve is approximated to form a continuously connected line seg-
ment. The size of the line segment is approximated to the curve with a
threshold value of slope. The piecewise linear approximation assumes that
the slope of each line segment approximates the tangent to the curve at the
medial point and that the curve does not change abruptly in between two
such points, and such changes would be removed as noise. The change in
slope from one line segment to other is represented by the angles θ1, θ2,…
and these can be observed as a pattern characteristic of the curve. The line
segments have been extended beyond the curve to form secants for ease of
visual inspection.

17.3 Curve Tracking and Curve Fitting 269

 Fig. 17.2. The slope variations in a piecewise linear approximation of circular and

elliptic curves

Consider an arbitrary circle in 2D space as shown in Fig. 17.2 (a). By
visual inspection one can instinctively see the relation behind the
changing slope of the secants. The angles formed by consecutive chords
are all equal in the case of a circle, which can be proved by simple
geometric axioms and theorems. Similarly for an ellipse the angles θ1,
θ2 shown, gradually decrease to a minimum and then increase gradu-
ally, thus forming a periodically changing angle. It is, however, to be
noted that to obtain a fairly accurate relation, the chord length should
be chosen judiciously. Too small chord lengths would cause a number
of anomalous results arising due to noise present in the edge-mapped
images. Too large values reduce the accuracy and efficiency of the pre-
diction. This depends on the nature of the algorithm being used. Once
the nature of the curve is predicted, its parameters such as the center,

(a) The case of a circle

(b) The case of an ellipse

270 17 Perceptions of Non-planar Surfaces

radius, foci, etc. can be estimated by applying the principles of coordi-
nate geometry.

In this experimental setup, images sent by a digital camera mounted
on a mobile robot are analyzed and interpreted to predict the shape of
obstacles and objects in the path. Edge detection has been implemented
using the Prewitt gradient operator with a heuristic threshold decision.
The edge map is then transformed to a simple arc diagram using the
thinning algorithm and the thin curves are then tracked out to obtain an
array of points which are analyzed to predict the nature of the curve.
The pseudo-code for the program is given in Listing 17.2.

Listing 17.2 Procedure for Curve Fitting

__
Begin:
Divide the curve into small numbers of segments
Find gradient // obtain the slope of the tangents (θi)
at each point of the segment on the curve //
If:
All the slopes of the segment are nearly equal
Then:
Predict the curve as a circle
ElseIF:
The slopes gradually decreases first to a minimum and
increases gradually
Then:
Predict the curve as an ellipse
End;

17.4 Program for Curve Detector

The curve detection program is aimed at identifying the curved edges of
objects in the robot’s environment. The program is basically divided into
two basic sections, i.e. edge map generator and curve recognition system.
The edge map generator is a conventional algorithm which implements a
Prewitt or Sobel edge detection operator on an image. The “image” in
this case is procured from a color image server program that runs on the
robot and sends frames to the Java client. The rest of the processing is
done on the client for better efficiency. After the generation of the edge
map, a portion of the edge map is selected on the basis of its content and
passed to the curve recognition system. Curve detection is based on a

17.4 Program for Curve Detector 271

piecewise linear approximation theory. This theory based on the fact that
every curve exhibits a distinct slope pattern which can be studied from
the differential angle formed by secants of equal length cut successively
through the curve.

The flow charts for the server and client program are illustrated in Figs.
17.3 and 17.4 respectively and the source code for the server and the client
are given in Listing 17.3 and Listing 17.4 respectively at the website of the
book. The program log session is given below followed by program output
shown in Figs. 17.5 and 17.6.

Fig. 17.3. Flow chart for client program

Start

Get color image from
camera, Initialize
counter count = 0

count
<320x240

Send RGB pixel value to
client, Increment count

Is inter-
rupted Stop

Yes

Yes

No

No

272 17 Perceptions of Non-planar Surfaces

Fig. 17.4. Flow chart for server program

counter count = 0

Start

Is inter-
rupted

Stop

Whether
Completed

Yes

Convert to
Gray Scale Yes

No

Yes

count<
320 x 240

Read RGB pixel value
from server, Increment

count

No H= horizontal gradient
V= vertical gradient
G = sqrt (H2 + V2)

Edge Map E = Threshold(G)
Apply Thinning Algorithm

Sequence edge points into
curve points

Choose approximate chord
length and form piece-wise

linear approximation

Find differential angle between
successive lines and predict the

nature of curve

Display Result

17.4 Program for Curve Detector 273

Program log session
IEEE 1394 interface open request
1 card(s) found, 2 node(s)
Checking card 0, node 0
Vitana api addr: 78080600
Vendor length is 10
Vendor is: VITANA
Model length is 10
Model is: PixeLINK(tm)
Camera found at node 0 0: VITANA PixeLINK(tm)
Camera ISO bandwidth needed: A10
Max_Image_Size_Inq: 05080408
Unit_Size_Inq: 00080008 (0)
Image_Size_Inq: 050003C0 (0)
Frame_Rate_min: 0000000E (0)
Frame_Rate_max: 000000A0 (0)
Frame_Rate_def: 00000020 (0)
Flags: 00000000 (0)
PCS2112 ver 0x30
Imager reset starting...
Imager reset succeeded
Imager ready.
Camera ISO speed set to 400 Mb/sec
Camera ISO parameters: 2000000
Opened frame grabber.
Size: 320/1280 240/960
Opened the server port
Client has connected
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 4 (431D7000 42A16010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
DBC count error... 220 254 3 165512
line count error 0 3 114124 0
DBC count error... 237 12 3 152560
DBC count error... 3 37 3 170560
DBC count error... 168 202 3 188460
DBC count error... 164 198 3 73320
DBC count error... 24 58 2 160556
DBC count error... 36 105 3 177644
DBC count error... 226 4 2 164020

274 17 Perceptions of Non-planar Surfaces

DBC count error... 26 57 3 169140
DBC count error... 84 118 3 12084
DBC count error... 194 200 2 154276
DBC count error... 213 248 3 156604
DBC count error... 130 151 2 141584
DBC count error... 189 224 3 19172
DBC count error... 157 191 3 37408
DBC count error... 230 8 3 108764
DBC count error... 9 43 3 126064
DBC count error... 69 88 3 8876
DBC count error... 71 105 3 152936
DBC count error... 227 0 3 6060
DBC count error... 109 144 3 127508
DBC count error... 202 239 2 65512
DBC count error... 140 170 2 127644
DBC count error... 200 234 4 12728
DBC count error... 80 114 3 132560
DBC count error... 199 218 3 45760
DBC count error... 236 11 2 103376
DBC count error... 20 55 4 125200
DBC count error... 186 223 2 103784
Aria: Received signal 'SIGINT'. Shutting down.
Closing video device and TCP connection ...
Stopping DMA
Closing video device and TCP connection ...
Stopping DMA
ISO thread terminated

Fig. 17.5. Java front-end for edge map generator

17.5 Summary 275

Fig. 17.6. Java frame for curve detector

During the program execution, the client front end displays the output as
shown in the first window of Fig. 17.5. This image is grabbed by the ro-
bot’s camera and the second window displays the edge map, as generated
by the program. The window provides two control buttons namely
“HOLD” and “PREDICT”. The “HOLD” button serves to freeze the video
frame so that a steady picture may be used for further processing. A por-
tion of the image is then selected on the edge-map using the mouse. The
“PREDICT” button launches the curve recognition program for the se-
lected portion and the result is displayed as shown in Fig. 17.6. The gray
lines represent a possible circular region with the break lines showing de-
viation. The effect of noisy image however is a limitation to the perform-
ance of the program.

17.5 Summary

The task of curve fitting becomes exceedingly difficult and error prone in
real-time visual feedback robotic systems. Thus predictions based on tradi-
tional curve fitting methods do not provide satisfactory accuracy in a noisy
visual environment. It is therefore required to approximate a certain length
of the obtained curve points to a known law so that the effects of noise can
be minimized. Such curve-fitting algorithms, however, lead to tedious cal-
culations when the nature of the curve is of second or higher order. In this
experiment, an alternative to traditional curve-fitting algorithms is pro-
posed by assuming the nature of the curve as being piecewise linear. The
experiment has produced satisfactory results. The effect of a noisy image,
however, is a limitation on the performance of the program.

18 Intelligent Garbage Collection

18.1 Introduction

Intelligent garbage collection is one of the real-time applications of
mobile robots, it utilizes the robot’s motion, its gripper, as well as its
vision systems. The objective of this program is to collect a given set of
colored boxes and bring them to one place. The color of the box is not a
restriction, and is set during the run time of the program. This is an in-
teresting program, where the robot collects the objects having definite
visual characteristics.

First the color of the box is selected and the images are obtained. Each
image is checked pixel by pixel with respect to the color of the box. If
the pixel value lies in a particular range (the range being set by the user)
then that pixel is made black otherwise white. In this way the whole
image is mapped into another image, where we have black dots resem-
bling the color of the box. After this the image is divided into 12 blocks
(3 × 4). The number of dots in each block is counted and the block hav-
ing the highest number is found. If this value exceeds the preset value
(the preset value is set so that noise is not taken as the object) then that
particular block is selected. The robot moves to the object for grabbing.
If the surface plane of the object is not parallel to the gripper arm, then it
may not be possible for the robot to grab in the first attempt and some
more trials are required.

18.2 Algorithms and Source Code for Garbage Collection

The client–server algorithms are given in Listings 18.1 and 18.2 and their
programs written in C++ and Java are given in Listings 18.3 and 18.4 re-
spectively at the website of the book. The garbage collection program out-
put with program log session is depicted in Fig. 18.1.

278 18 Intelligent Garbage Collection

Listing 18.1. Server algorithm

__
Step 1: Open the server socket and wait for the client to join.
Step 2: Send the image and wait for the next instruction.
Step 3: If next instruction = IMAGE
 Then go to Step – 2.
 Else go to Step – 4.
Step 4: If next instruction = STOP
 Then stop the robot.
 Go to Step – 2.
 Else go to Step – 5.
Step 5: If next instruction = EXIT
 Then go to Step – 11.
 Else go to Step – 6.
Step 6: If next instruction = GO
 Then go to Step – 7.
 Else go to Step – 2.
Step 7: Send Image and get angle and instruction.
Step 8: If angle = 45
 Then turn by angle. Go to Step – 9.
 Else turn by angle.
 Move 250 mm.
 Goto Step – 9.
Step 9: If Beam break state = true
 Then close the gripper.
 Turn towards origin and move to origin.
 Drop the object there and return to initial position.
Step 10: If instruction = IMAGE
 Go to Step – 7.
 Else If instruction = STOP Go to Step – 2.
 Else Go to Step – 11.
Step 11: If Client connected.
 Then Go to Step – 7.
 Else Go to Step – 12.
Step 12: Stop.
__

18.2 Algorithms and Source Code for Garbage Collection 279

Listing 18.2. Client algorithm

__
Step 1: Open the client socket and connect to the server.
Step 2: Get the image.
Step 3: Select the color of the box. Get the user instruction.
Step 4: If instruction = IMAGE
 Go to Step – 2.
 Else if instruction = GO
 Go to Step – 5.
 Else go to Step – 2.
Step 5: Get the next image.
Step 6: I=0, C=color of the box,

 Threshold = value of range, M = min. upper limit.
 Image() = color image, Ang(12) = the angles for 12 blocks

Step 7: For I=0 , I<320×240 , I++
 If abs(image(I)-C) <= threshold
 Image(I) = black

 k = (i/320)/80*4 + (i%320)/80;
 count[k] ++
 Else Image(I) = white

Step 8: If MAX(count) > M
 Then keep k such that count(k) = MAX(count)
Step 9: Send Ang(k) if k has max count
 Else send 45.
Step 10: If Client connected
 Goto Step – 5.
 Else goto Step – 11.
Step 11: Stop.
__

Program output log
IEEE 1394 interface open request
1 card(s) found, 2 node(s)
Checking card 0, node 0
Vitana api addr: 78080600
Vendor length is 10
Vendor is: VITANA
Model length is 10
Model is: PixeLINK(tm)

280 18 Intelligent Garbage Collection

Camera found at node 0 0: VITANA PixeLINK(tm)
Camera ISO bandwidth needed: A10
Max_Image_Size_Inq: 05080408
Unit_Size_Inq: 00080008 (0)
Image_Size_Inq: 05000400 (0)
Frame_Rate_min: 0000000E (0)
Frame_Rate_max: 000000A0 (0)
Frame_Rate_def: 00000008 (0)
Flags: 00000000 (0)
PCS2112 ver 0x30
Imager reset starting...
Imager reset succeeded
Imager ready.
Camera ISO speed set to 400 Mb/sec
Camera ISO parameters: 2000000
Opened frame grabber.
Size: 320/1280 240/960
Opened the server port
Client has connected
Size: 320/1280 240/960
Starting DMA
Camera ISO bandwidth needed: A10 (2576)
w, h: 640, 480
frame bytes: 614400
Size: 196608
buf size: 196608
Iso Thread running..., dmafd = 4 (431D7000 42A16010)
DBS: 161 FN: 1 QPC: 1 MAX_DBS: 4
DBC count error... 108 142 3 150084
DBC count error... 12 42 2 5148
DBC count error... 52 62 4 83272
DBC count error... 228 244 3 47500
DBC count error... 35 69 3 120996
DBC count error... 91 129 3 106072
DBC count error... 104 130 4 124016
DBC count error... 138 175 2 116968
DBC count error... 235 17 3 121468
DBC count error... 164 195 3 137528
DBC count error... 87 121 3 115876
DBC count error... 234 0 3 57524
DBC count error... 83 118 3 36856
DBC count error... 178 206 3 156204
DBC count error... 47 66 3 82984
DBC count error... 73 107 3 112568
DBC count error... 18 46 3 158060
DBC count error... 51 86 3 90124
DBC count error... 117 152 3 137812

18.3 Summary 281

DBC count error... 32 66 2 161312
DBC count error... 192 226 3 118320
Got the object.
Dropping the object.
Closing video device and TCP connection ...
Stopping DMA
Aria: Received signal 'SIGINT'. Shutting down.
Closing video device and TCP connection ...
Stopping DMA
ISO thread terminated

Fig. 18.1. Output of garbage collection program

18.3 Summary

In the main menu, there are four buttons, namely “Get Image”, “Color”,
“Go” and “Stop”. The function of the first button Get Image is to get the
image from the server usually to take the image of the colored box. This is
used to set the color of the box during the run time of the program. After
the image of the box is received, which will be shown in the left window,

282 18 Intelligent Garbage Collection

the Color button is pressed. After that, all other buttons will be deactivated
and, therefore, the portion of the image that contains the color of the box is
selected. Then, the color of the box taken by the program is shown in the
Box Color region. If the color of the box is not taken correctly or we want
to select the color of the box again, the Get Image button is clicked again,
and we proceed as before.

Once the user is satisfied with the color of the box, then the Go button is
clicked. This makes the robot search for the box in its environment. If it
finds one, then it moves towards it until it grabs it and it drops it at the ori-
gin. After dropping at the origin it moves back to its original position from
where the box was collected. Again, it continues to scan the environment.
This program runs continuously until the window is closed. If for some
reasons or other the user wants to stop the robot, the Stop button is clicked,
which stops the robot in its next cycle of getting the image.

The program has two sliders, i.e. Threshold value and Max. count value,
for checking whether the image contains the color box or not. The program
finds out which pixels are in close range of color as compared to the color
of the box. This range is set by the Threshold value slider. Once the color
box is found in the image, the user has to decide in which direction the ro-
bot should move in order to catch the object. For which the right window
is divided into 12 parts (3 × 4) and we count the number of pixels close to
the color of the Color box in each sub-window. The sub-window having
the largest count decides the direction of the robot. This count is set by the
Max. count value slider.

References

[Aloimonos,1987] Aloimonos, J., Weiss, I., and Bandopadhay, A., “Active vi-
sion”, International Journal of Computer Vision, vol. 1, no. 4, pp. 333–356,
1987.

[Arbib, 1981] Arbib, M., “Perceptual structures and distributed motor control”, in
Handbook of Physiology—The Nervous System II, ed. V.B. Brooks, Bethesda,
Maryland: American Physiological Society, pp. 1449–1465, 1981.

[Asada, 1990] Asada, M., “Map Building for a mobile robot from sensory data”,
IEEE Transaction on Systems, Man and Cybernetics, vol. 37, no. 6, pp. 1326–
1336, Nov./Dec., 1990.

[Ayache, 1987] Ayache, N., Faugeras, O.D., “Building a consistent 3D representa-
tion of the mobile robot environment by combining multi stereo views”, Pro-
ceedings of the International Joint Conference on Artificial Intelligence, Au-
gust 1987.

[Ayache, 1991] Ayache, N., Artificial Vision for Mobile Robot, The MIT Press,
Massachusetts, 1991.

[Baldi, 1995] Baldi, P.F., Hornik, K., “Learning in linear neural networks: a sur-
vey”, IEEE Transactions on Neural Networks, vol. 6. no. 4, pp. 837–857, July
1995.

[Ballard, 1991] Ballard, D.H., “Animate vision”, Journal of Artificial Intelligence,
vol. 48, no. 1, pp. 57–86, 1991.

[Bezdek, 1991] Bezdek, J.C., Ed., Pattern Recognition with Fuzzy Objective
Function Algorithms, Kluwer Academic Press, 1991.

[Bharick, 1984] Bharick, H.P., “Semantic memory content in permastore: fifty
years of memory for Spanish learned in school”, Journal of Experimental Psy-
chology: General, Vol. 120, pp. 20–33, 1984.

[Borenstain, 1996] Borenstain, J., Everett, H.R. and Fang, L. Navigating Mobile
Robots: Systems and Techniques, A. K. Peter Wellesley, 1996.

[Briscoe, 1997] Briscoe, G., Caelli, T., “ABC: biologically motivated image un-
derstanding”, in Machine Learning and Image Interpretation, editor, Caelli,
T., and Bischof, W.F., Plenum Press, New York, 1997.

[Brooks, 1989] Brooks, R.A., “A robot that walks; emergent behaviors from a
carefully evolved network”, Neural Computation 1(2):253, 1989.

[Brown, 1997] Robert, G., Hwang, Patrick Y.C., Introduction to Random Signals
and Applied Kalman Filtering, John Wiley, 1997.

284 References

[Caelli and Bischob, 1997] Caelli, T., and Bischob, W.F., Machine Learning and
Image Interpretation, Plenum Press, New York, 1997.

[Carpenter, 1987] Carpenter, G.A., Grossberg, S., “A massively parallel architec-
ture for a self-organizing neural pattern recognition machine”, Computer Vi-
sion Graphics and Image Processing 37, pp. 54–115, 1987.

[Chang, 1986] Chang, T.M., “Semantic Memory: Facts and Models”, Psychologi-
cal Bulletin, vol. 99, pp. 199–220, 1986.

[Clark, 1989] Clark, J.J, “Authenticating edges produced by zero-crossing algo-
rithms”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 8, pp. 830–831, 1989.

[Connell, 1990] Connell, J., Minimalist Mobile Robotics: A Colony-Style Architec-
ture for an Artificial Creature, Boston, Mass: Academic Press, 1990.

[Davis, 1986] Davis, L.S., and Kambhampati, S., “Multi-resolution path planning
for mobile robots”, IEEE Transactions on Robotics and automation, vol. RA-
2, no. 3, 1986.

[Dean, 1995] Dean, T., Allen, J., and Aloimonos, Y., Artificial Intelligence: The-
ory and Practice, Addison-Wesley, 1995.

[Elfes, 1987] Elfes, A., “Sonar-based real-world mapping and navigation”, IEEE
Journal of Robotics and Automation, vol. RA-3, no. 3, pp. 249–264, June,
1987.

[Feldman, 1992] Feldman, J.A., “Natural Computation and Artificial Intelli-
gence”, Plenary Lecture presented at the International Joint Conference on
Neural Networks, Baltimore, 1992.

[Fermuller and Aloimonos, 1993] Fermuller, C., and Aloimonos, Y., “Vision and
action”, Image Vision Computation, vol. 13, no.10, pp. 725–744, Dec. 1993.

[Filho, 1994] Filho, R., “Genetic algorithms programming environments”, IEEE
Transactions on Computers, vol. 26, pp. 28–43, June 1994.

[Fram, 1975] Fram, J.R. and Deutsch, E.S., “On the quantitative evaluation of
edge detection schemes and their comparison with human performance”,
IEEE Transactions on Computers, vol. C-24, no. 6, pp. 616–628, 1975.

[Gardner, 1985] Gardner, H., The Mind’s New Science: A History of the Cognitive
Revolution, New York: Basic Book, 1985.

[Goldberg, 1989] Goldberg, D.E., Genetic Algorithm in Search Optimization and
Machine Learning, Reading, MA, Addison-Wesley, 1989.

[Harlick, 1993] Harlick, R.M., Shapiro, L.G., “Computer and Robot Vision”, Ad-
dison-Wesley, Vol. 2, 1993.

[Hashimoto, 1999] Hashimoto, K., “Observer-based visual servoing”, in Control
in Robotics and Automation, edited by Ghosh, B.K., Xi, Xing, Tarn, J.J., Aca-
demic Press, 1999.

[Haykins, 1999] Haykin, S., Neural Networks: A Comprehensive Foundation,
Prentice Hall, 1999.

[Heijden, 1995] Heijden F.V., “Edge and Line Feature Extraction Based on Co-
variance Models”, IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 17, no. 1, pp. 69–77, Jan. 1995.

[Buchanan, 1993] Buchanan, B.G. and Wilkins, D.C., Eds., Readings in Knowl-
edge Acquisition and Learning: Automating the Construction and Improve-
ment of Expert Systems, Morgan Kaufmann, San Mateo, CA, 1993.

References 285

[Horswill, 1993] Horswill, I., “Polly: A vision-based artificial agent”, Proceedings
of the Eleventh National Conference on Artificial Intelligence, Menlo Park,
AAAI Press, CA, 1993.

[Jahne, 1997] Jahne, B., Practical Handbook on Image Processing for Scientific
Applications, CRC Press, Boca Raton, New York, 1997.

[Jain, 1999] Jain, L. C., Fukuda, T., Soft Computing for Intelligent Robotic Sys-
tems, Springer-Verlag, 1999.

[Java, 2002] JavaTM 2 SDK, Standard Edition Documentation (Java 2 platform
API) from java.sun.com, 2002

[Kasabov, 1998] Kasabov, N., “Introduction: Hybrid intelligent adaptive sys-
tems”, International Journal of Intelligent System, vol. 6, pp. 453–454, 1998.

[Klander, 2000] Klander, Lars, Core Visual C++ 6.0, Pearson Education, 2000.
[Konar, 2000] Konar A., Artificial Intelligence & Soft Computing: Behavioral and

Cognitive Modeling of the Human Brain, CRC Press, Boca Raton, 2000.
[Konolige et al., 1995] Konolige, K., Myers K., Saffiotti, A., and Ruspini, E.,

“The Saphira architecture: A design for autonomy”, Journal of Experimental
and Theoretical Artificial Intelligence, vol. 9, pp.215–235, 1995.

[Kosko, 1987] Kosko, B. “Adaptive bi-directional associative memories”, Ap-
plied Optics, 26 (23): pp.4947–4960, Dec. 1987.

[Kosko, 1988] Kosko, B. “Bidectional associative memories”, IEEE Transactions
on Systems, Man and Cybernetics, SMC-18, pp. 42–60, 1988.

[Kosko, 1994] Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall,
Englewood Cliffs, NJ, 1994.

[Lee et al., 1997] Lee, Seong-Whan, and Song, Hee-Heon, “A new recurrent neu-
ral-network architecture for visual pattern recognition”, IEEE Transactions on
Neural Networks, vol. 8, no.2, pp.331–340, March 1997.

[Lin et al., 1994] Lin, H. S., Xiao, J., and Michalewicz, Z., “Evolutionary naviga-
tor for a mobile robot”, Proceedings of IEEE International Conference on
Robotics and Automation, San Diego, CA, pp. 2199–2204, May 1994.

[Maes and Brooks, 1990] Maes, P., Brooks, R., “Learning to coordinate behav-
iors”, Proceedings of Eighth National Conference on Artificial Intelligence,
796, AAAI Press, Menlo Park, CA, 1990.

[Mamdani, 1977] Mamdani, E.H., Application of fuzzy set theory to control sys-
tems, in Fuzzy Automata and Decision Processes, Gupta, M.M., Saridies,
G.N. and Gaines, B.R., Eds., Oxford University Press, Amsterdam, New
York, pp. 77–88, 1977.

[Marr, 1980] Marr, D.C. and Hildreth, E.C., “Theory of edge detection”, Proceed-
ings of Royal Society, London, vol.B207, pp. 187–212, 1980.

[Marr, 1982] Marr, D., Vision, Freeman, San Francisco, 1982.
[Mataric, 1992] Matric, M. J., “Integration of representation into goal-driven be-

havior-based robots”, IEEE Transactions on Robotics and Automation, vol.8,
no.3, pp.304–312, 1992.

[Matlin, 1984] Matlin, M.W., Cognition, Harcourt Brace Publishers & Prism
Books, 1995.

[Hinton, 1981] Hinton, G.E., “Shape representation in parallel systems”, Proceed-
ings of the 7th International Joint Conference on Artificial Intelligence, Van-
couver, British Columbia, 1981.

286 References

[Merlo et al., 1987] Merlo, X., Lanusse, A., Zavidovique B., “Optimal control of a
robot perception system”, Proceedings of IASTED International Symposium
on Expert Systems Theory and Applications, Geneve, 1987.

[Michalewicz, 1996] Michalewicz, Z., Genetic Algorithms + Data Structures =
Evolution Programs, 3rd edition, New York, Springer-Verlag, 1996.

[Michalski, 1983] Michalski, R.S., “A theory and methodology of inductive learn-
ing”, Artificial Intelligence, vol. 20, no. 2, pp. 111–161, 1983.

[Minsky, 1975] Minsky, M., “A framework for representing knowledge”, The
Psychology of Computer Vision, edited by Patrick H. Winston, McGraw-Hill,
New York, 1975.

[Mitchell, 1997] Mitchell, T.M., Machine Learning, Tata McGraw-Hill, 1997.
[Mitchell et al., 2001] Mitchell, Mark, Oldham, Jeffrey and Samuel, Alex, Ad-

vanced Linux Programming, New Riders Publisher, 2001.
[Murphy et al., 1998] Murphy, R., Kortenkamp, D., “Vision for mobile robots”,

Artificial Intelligence and Mobile Robots, AAAI Press/The MIT Press, 1998.
[Murphy, 1998] Murphy, R.R., Artificial Intelligence and Mobile Robots, AAAI

Press/The MIT Press, 1998.
[Narendra et al., 1990] Narendra, K. S. and Parthasarathi, K., “Identification and

control of dynamic system using neural networks”, IEEE Transactions on
Neural Networks, vol.1, pp. 4–27, 1990.

[Newell et al., 1972] Newell, A., and Simon, H.A., Human Problem Solving,
Englewood Cliffs, NJ: Prentice Hall, 1972.

[Pagac et al., 1998] Pagac, D., Nebot, E.M., and Durrant-Whyte, H., “An eviden-
tial approach to map-building for autonomous vehicles”, IEEE Transactions
on Robotics and Automation, vol. 14, no. 4, pp. 623–629, August, 1998.

[Patnaik et al., 1998a] Patnaik, S., Konar, A. and Mandal, A. K., “Map building
and navigation by a robotic manipulator”, Proceedings of International Con-
ference on Information Technology, Tata McGraw-Hill Publisher, New Delhi,
pp. 227–232, 1998.

[Patnaik et al., 1998b] Patnaik, S., Konar, A. and Mandal, A.K., “Navigational
planning with dynamic scenes with timed Petri nets”, Proceedings of Interna-
tional Conference on Computer and Devices for Communication, Allied Pub-
lisher, New Delhi, pp. 40–43, 1998.

[Patnaik et al., 1999a] Patnaik, S., Konar, A. and Mandal, A.K. “Constrained hi-
erarchical path planning of a robot by employing neural nets”, Proceedings of
the Fourth International Symposium on Artificial Life and Robotics, pp. 690–
693, Japan, Jan. 1999.

[Patnaik, 1999b] Patnaik, S., Building Cognition for Mobile Robot, Ph.D. Thesis
submitted to Jadavpur University, Calcutta, India, Sept., 1999.

[Patnaik et al., 1999c] Patnaik, S., Konar, A., and Mandal, A. K., “Bi-directional
associative memory for mobile robot navigation”, Proceedings of Interna-
tional Conference on Neural Network, Washington, July, 1999.

[Patnaik et al., 2003a] Patnaik, S., Karibasappa, K., “Cognition techniques and
their applications”, Technology and Business for the New Millennium, edited
by Prof. C.T. Leondes, Kluwer Academic Press, 2003.

[McDermott et al., 1984] McDermott, D. and Davis, E., “Planning routes through
uncertain territory”, Journal of Artificial Intelligence, vol. 22, 1984.

 287

[Patnaik et al., 2003b] Patnaik, S., Karibasappa, K., “Edge, shade and mixed range
detection by fuzzy gaussian filter for an autonomous robot”, Journal of Intel-
ligent Robotic Systems, vol.37, no.3, 2003.

[Pedrycz, 1995] Pedrycz, W., Fuzzy Sets Engineering, CRC Press, Boca Raton,
FL, 1995.

[Pomerleau et al., 1989] Pomerleau, D.A., ALVINN: An autonomous land vehicle
in a neural network, Pittsburgh, PA: Carnegie Mellon University, Technical
report CMU-CS-89–107, 1989.

[Popovic et al., 1994] Popovic, D., Bhatkar, V.P., Methods and Tools for Applied
Artificial Intelligence, Marcel Dekker Inc, 1994.

[Gonzalez, 1993] Gonzalez, R.C., Richard E.W., Digital Image Processing, Addi-
son Wesley, 1993.

[Rich et al., 1996] Rich, E., Knight, K., Artificial Intelligence, McGraw-Hill, New
York, 1996.

[Rimon, 1992] Rimon, E., Koditschek, Daniel E., “Exact robot navigation using
artificial potential functions”, IEEE Transactions on Robotics and Automa-
tion, vol. 8, no. 5, pp. 501–518, October 1992.

[Rubini, 1998] Rubini, A., Linux Device Drivers, O’Reilly, 1998.
[Rumelhart et al., 1986] Rumelhart, D.E., and McClelland, J.L., Parallel Distribu-

tion Processing: Exploration in the Microstructure of Cognition, vol. 1, Cam-
bridge, MA: MIT Press, 1986.

[Saffioti, 1997] Saffiotti, A., “Fuzzy logic in autonomous robotics: behavior coor-
dination”, in Proceedings of 6th IEEE International Conference on Fuzzy Sys-
tems, Barcelona, Spain, 1997, vol. 1, pp. 573–578.

[Samet, 1982] Samet, H., “Neighbor finding techniques for image representation
by Quadtree”, Journal of Computer Graphics and Image Processing, Vol. 18,
pp 37–57, 1982.

[Saphira, 1999] Saphira Operations and Programming Manual, Version 6.2, Au-
gust 1999.

[Schalkoff, 1997] Schalkoff, R.J., Artificial Neural Networks, McGraw-Hill,
1997.

[Sekuler et al., 1990] Sekuler, R. and Blake, R., Perception (Second edition),
McGraw-Hill, 1990.

[Sullivan, 1999] Sullivan, M.J., Vision active deformable modes in visual ser-
voing: Control in Robotics and Automation, edited by Ghosh, B.K., Xi, Xing,
Tarn, J.J., Academic Press, 1999.

[Swan, 2000] Swan, T., GNU C++ for Linux, QUE Corporation, 2000.
[Sympson, 1988] Sympson, P., Artificial Neural Nets: Concepts, Paradigms and

Applications, Pergamon Press, Oxford, 1988.
[Takahashi, 1989] Takahashi, O., and Schilling, R. J., “Motion planning in a plane

using generalized Voronoi diagrams”, IEEE Transactions on Robotics and
Automation, vol.5, no.2, 1989.

[Tanaka, 1995] Tanaka, K., “Stability and stabilizability of fuzzy-neural-liner con-
trol systems”, IEEE Transactions on Fuzzy Systems, vol. 3, no. 4, 1995.

[Taylor and Kriegman, 1998] Taylor, C.J., and Kriegman D.J., “Vision-Based Mo-
tion Planning and Exploration Algorithm for Mobile Robots”, IEEE Trans
on Robotics and Automation, vol. 14, no. 3, pp. 417-426, June, 1998.

References

288 References

 [Trojanowski, 1997] Trojanowski, K., Michalewicz, Z., and Xiao, J., “Adding
memory to an evolutionary planner/navigator”, Proceedings of the Fourth
IEEE International Conference on Evolutionary Computation, Indianapolis,
IN, April, 1997.

[Tulving, 1987] Tulving, E., “Multiple memory systems and consciousness”, Hu-
man Neurobiology, vol.6, pp.67–80, 1987.

[Tzionas et al., 1997] Tzionas, Panagiotis G., et al. “Collision-free path planning
for a diamond-shaped robot using two-dimensional cellular automata”, IEEE
Trans. on Robotics and Automation, vol.13, no.2, 1997.

[Waltz, 1997] Waltz, D., “Neural nets and AI: time for a synthesis”, Plenary talk,
International Joint Conference on Neural Networks, Houston, vol.1, 1997.

[Winston, 1975] Winston, P.H., “Learning structural descriptions from examples”,
The Psychology of Computer Vision edited by P.H. Winston, McGraw-Hill,
New York, 1975.

[Xiao et al., 1997] Xiao, J., Michalewicz, Z., Zhang L., Trojanowski K., “Adap-
tive evolutionary planner/navigator for mobile robots”, IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 18–28, April 1997.

[Yager, 1983] Yager, R.R., “Some relationships between possibility, truth and cer-
tainty”, Fuzzy Sets and Systems, Elsevier, North Holland, vol. 11, pp. 151–
156, 1983.

[Zadeh, 1983] Zadeh, L.A., “The role of fuzzy logic in the management of uncer-
tainty in Expert systems”, Fuzzy Sets and Systems, Elsevier, North-Holland,
vol. 11, pp. 199–227, 1983.

[Zavidovique, 2002] Zavidovique, B.Y., “First steps of robotic perception: the
turning point of the 1990s”, Proceedings of the IEEE, vol. 90, no. 7, pp.1094–
1112, July 2002.

[Zimmerman, 1991] Zimmerman H.J., Fuzzy Set Theory and Its Applications,
Kluwer Academic, Dordrecht, The Netherlands, 1991.

Index

2D World map 21–23, 202
3D Line reconstruction 243
3D Perception 227, 251
3D Plane reconstruction 247, 248
3D Points reconstruction 237,

241–243, 247

ARIA 79, 80

client-server 80, 96
socket programming 95, 96

ArRobot 80–82, 84, 85, 87, 88–91,
93, 117, 129, 140, 153, 165, 177

BotSpeak program 127

Cellular automata 39, 40
Chromosome encoding 61
Computational theory of Marr 13
Correspondence problem 249
Crossover 20, 59, 61–66
Curve fitting 266, 267
Curve tracking 266

Edge detection 263, 265, 266, 270
Elitism 63

GA-based navigation 67
Garbage collection 277
Genetic algorithms 17, 19, 20, 60
Global coordinate system 212, 217
Global representation 204, 211,

212, 217
Gripper control 137, 139, 144

Image capture 79, 100, 101, 221
Image formation 203, 205
Image-server program 189–190, 270
Imaging geometry 201, 205
Intelligent garbage collection 277

Kalman filter 204, 227, 228–231,
237, 239–242, 244–249,

Map building 1, 21–23, 25–27, 29,

31–33
Minimal representation 227
Motion-server program 189–190, 196
Mutation 20, 59–66

Navigation 6, 7, 10, 15, 21, 22, 39, 41,

59, 64, 66, 67, 69, 70, 78–80, 83,
94, 151, 189, 201

Navigator client program 189,
195, 196

Path planning 2, 39, 41, 47, 53, 201
Perceptions

non-planar surfaces 263
Perspective projection 203–211, 218

Quadtree 41–44, 47, 49, 52–54

neighbor finding algorithms 47

Range devices 87, 93
Re-planning 59, 68–70
Run length encoding 190, 221

Selection 63, 66
Small vision system 79, 100
Socket programming 95, 96
Sonar reading display 151, 153, 155
SVS C++ classes 101

Tele-operation program 177, 180, 181
Temporal associative memory 68,

69, 76

Wandering program 163

251, 235

Cognitive Technologies

S. K. Pal, L. Polkowski, A. Skowron (Eds.):
Rough-Neural Computing.
Techniques for Computing with Words.
XXV, 734 pages. 2004

H. Prendinger, M. Ishizuka (Eds.):
Life-Like Characters.
Tools, Affective Functions, and Applications.
IX, 477 pages. 2004

H. Helbig:
Knowledge Representation and
the Semantics of Natural Language.
XVIII, 646 pages. 2006

P. M. Nugues:
An Introduction to Language Processing
with Perl and Prolog.
An Outline of Theories, Implementation,
and Application with Special Consideration
of English, French, and German.
XX, 513 pages. 2006

W. Wahlster (Ed.):
SmartKom: Foundations of Multimodal Dialogue Systems.
XVIII, 644 pages. 2006

B. Goertzel, C. Pennachin (Eds.):
Artificial General Intelligence.
XVI, 509 pages. 2007

O. Stock, M. Zancanaro (Eds.):
PEACH – Intelligent Interfaces for Museum Visits.
XVIII, 316 pages. 2007

V. Torra, Y. Narukawa:
Modeling Decisions: Information Fusion
and Aggregation Operators
XIV, 284 pages. 2007

P. Manoonpong:
Neural Preprocessing and Control
of Reactive Walking Machines.
Towards Versatile Artificial Perception–Action Systems.
XVI, 185 pages. 2007

XVI, 290 pages. 2007

S. Patnaik
Rob ot Cognition and Navigation
An Experiment with Mobile Robots

